|本期目录/Table of Contents|

[1]曹彦波,吴艳梅,许瑞杰,等.基于微博舆情数据的震后有感范围提取研究*[J].地震研究,2017,40(02):303-310.
 CAO Yanbo,WU Yanmei,XU Ruijie,et al.Research about the Perceptible Area Extracted after the Earthquake Based on the Microblog Public Opinion[J].Journal of Seismological Research,2017,40(02):303-310.
点击复制

基于微博舆情数据的震后有感范围提取研究*(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
40
期数:
2017年02期
页码:
303-310
栏目:
出版日期:
2017-04-23

文章信息/Info

Title:
Research about the Perceptible Area Extracted after the Earthquake Based on the Microblog Public Opinion
作者:
曹彦波吴艳梅许瑞杰张方浩
(云南省地震局,云南 昆明 650224)
Author(s):
CAO YanboWU YanmeiXU RuijieZHANG Fanghao
(Earthquake Administration of Yunnan Province,Kunming 650224,Yunnan,China)
关键词:
微博舆情数据 灾情判定 有感范围提取
Keywords:
microblog public opinion disaster determining perceptible area extracting
分类号:
P315.941
DOI:
-
摘要:
提出了基于微博舆情信息的震后有感范围快速判定技术框架,构建了微博舆情数据的获取方法和技术流程。根据中国地震烈度表和地震现场工作调查规范,将微博特征词与地震灾情速判指标进行关联匹配,建立微博灾情信息分类指标体系,通过自然邻点空间插值方法将离散分布的微博灾情点转化为连续分布的灾情面,形成震后灾区有感范围的时空变化特征分布图,辅助灾情快速判定。以2014年景谷6.6级地震为例,进行探索和实践。结果表明:在震后1~2 h内,微博用户活跃度高,信息量大且丰富,对信息充分挖掘有助于对灾情的宏观把握,对救灾决策部署有一定的参考意义,弥补了传统获取技术时效性差、数据量少、覆盖面小等问题。
Abstract:
It is an effective way to obtain disaster information quickly after the earthquake,through the analysis and mining of the microblogs public opinion data,because microblog has the characteristics of real-time,interactive,strong diffusion,wide spatial distribution,and so on. Based on the microblogs public opinion,the technology framework was proposed for the earthquake felt area of fast determining,and the data access methods and technological processes were built. According to Chinese seismic intensity scale and post-earthquake field works for field survey,it sets up a micro-blogging earthquake disaster information classification system through micro-blogging feature associated with the earthquake rapid determinate target match. The perceptible area used for secondary disaster quick judgment is extracted after the earthquake,and secondary disaster quick judgment was achieved through the Natural Neighbor interpolation method of distributed micro-blogging disaster into a continuous distribution. This method has been applied in practice after the earthquake with magnitude 6.6 occurred on October 7,2014 in Jinggu county. It is concluded that fully mining microblog information is used for wide grasp of disaster and relief decisions within 1 to 2 hours after the earthquake,with the microblog user activity high,informative and rich. It makes up for the traditional technical problems with inefficient and little coverage of data.

参考文献/References:


曹彦波,李永强,胡秀玉.2010.地震现场灾情信息编码体系研究[J].地震研究,33(3):344-348.
陈维锋,郭红梅,张翼,等.2014.四川省地震灾情快速上报接收处理系统[J].灾害学,29(2):116-122.
仇培元,陆锋,张恒才,等.2016.蕴含地理事件微博客消息的自动识别方法[J].地球信息科学学报,18(7):886-893.
高洋,张健.2005.基于自然邻点插值的数据处理方法[J].中国科学院研究生院学报,22(3):346-351.
何宗宜,苗静,彭将,等.2015.结合微博数据挖掘的时空特征分析[J].测绘通报,(10):60-64.
胡素平,帅向华.2012.网络地震灾情信息智能处理模型与地震烈度判定方法研究[J].震灾防御技术,7(4):420-430.
廉捷,周欣,曹伟,等.2011.新浪微博数据挖掘方案[J].清华大学学报:自然科学版,51(10):1300-1305.
刘经南,方媛,郭迟,等.2014.位置大数据的分析处理研究进展[J].武汉大学学报:信息科学版,39(4):379-385.
聂高众,安基文,邓砚.2012.地震应急灾情服务进展[J].地震地质,34(4):783-789.
帅向华,侯建盛,刘钦.2009.基于地震现场离散点灾情报告的灾害空间分析模拟研究[J].地震地质,31(2):321-333.
帅向华,胡素平,郑向向.2013.地震灾情网络媒体获取与处理模型研究[J].自然灾害学报,(3):178-184.
汪素云,俞言祥,高阿甲,等.2000.中国分区地震动衰减关系的确定[J].中国地震,16(2):99-106.
王景来,宋志峰.2001.地震灾害快速评估模型[J].地震研究,24(2):162-167.
王松,吴亚东,李秋生,等.2014.基于时空分析的微博演化可视化[J].西南科技大学学报,29(3):68-75.
徐敬海,褚俊秀,聂高众,等.2015.基于位置微博的地震灾情提取[J].自然灾害学报,24(5):12-18.
杨天青,席楠,张翼,等.2016.基于离散灾情信息的地震烈度分布快速判定方法研究[J].地震,36(2):48-59.
张方浩,和仕芳,吕佳丽,等.2016b.基于互联网的地震灾情信息分类编码与初步应用研究[J].地震研究,39(4):664-671.
张方浩,蒋飞蕊,李永强,等.2016a.云南地区地震烈度评估模型研究[J].中国地震,32(3):572-583.
章熙海,宋法奇,胡晓荣,等.2014.基于PDA的地震灾情信息流动采集系统的设计与实现[J].地震,34(2):131-137.
郑黎辉,黄声明,林岩钊,等.2012.基于智能手机的地震灾情快速上报系统的设计与实现[J].国际地震动态,(6):164-164.

备注/Memo

备注/Memo:
收稿日期:2017-01-06
基金项目:中国地震局震灾应急救援司专项课题《云南地震公共服务平台研发》和《基于微博位置信息的地震灾害速判方法研究》共同资助.

更新日期/Last Update: 2017-06-10