[1]郭加伟,李永树,王洪蜀,等.基于迁移学习的无人机高分影像地震泥石流信息检测*[J].地震研究,2018,41(02):180-185.
GUO Jiawei,LI Yongshu,WANG Hongshu,et al.Seismic Debris Flow Information Detection for High Resolution Images of UAV Based on Transfer Learning[J].Journal of Seismological Research,2018,41(02):180-185.
点击复制
《地震研究》[ISSN:1000-0666/CN:53-1062/P]
- 卷:
-
41
- 期数:
-
2018年02期
- 页码:
-
180-185
- 栏目:
-
- 出版日期:
-
2018-04-20
文章信息/Info
- Title:
-
Seismic Debris Flow Information Detection for High Resolution Images of UAV Based on Transfer Learning
- 作者:
-
郭加伟 1; 2 ; 李永树 1 ; 王洪蜀 3 ; 鲁 恒 4; 5
-
(1.西南交通 大学地球科学与环境工程学院,四川 成都 611756; 2.成都市规划信息技术中心,四川 成都 610094; 3.四川水利职业技术学院 测绘工程系,四川 成都 611231; 4.四川大学 水力学与山区河流开发保护 国家重点实验室,四川 成都 610065; 5.四川大学 水利水电学院,四川 成都 610065)
- Author(s):
-
GUO Jiawei1; 2; LI Yongshu1; WANG Hongshu3; LU Heng4; 5
1 Faculty of Geosciences and Environmental Engineering; Southwest Jiaotong University; Chengdu 611756; Sichuan; China 2 Information Technology Center of
-
Chengdu Planning and Management Bureau,Chengdu 610094,Sichuan,China 3 Department of Surveying and Mapping Engineering,Sichuan Water Conservancy Vocational College,Chengdu 611231,Sichuan,China 4 State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University,Chengdu 610065,Sichuan,China 5 College of Hydraulic and Hydroelectric Engineering,Sichuan University,Chengdu 610065,Sichuan,China
-
- 关键词:
-
地震; 泥石流; 无人机高分影像; 迁移学习; 信息检测
- Keywords:
-
earthquake; debris flow; UAV high-spatial resolution images; transfer learning; information detection
- 分类号:
-
P315.9; P642.23
- DOI:
-
-
- 摘要:
-
地震后经常会引发大量的泥石流灾害(称作地震泥石流),容易造成极大的破坏,无人机低空遥感技术以其便捷、时效性强等特点成为一种快速获取灾害信息的手段,但其影像的光谱信息较为缺乏,较难准确地检测地震泥石流灾害信息。针对以上问题,提出了一种基于迁移学习机制地震泥石流检测方法,该方法在已构建地震泥石流灾害样本库的基础上,将卷积神经网络训练得到的特征迁移到地震泥石流灾害信息检测中,完成地震泥石流灾害信息的自动检测,并将面向对象的地震泥石流灾害信息检测结果与迁移学习支持下的检测结果进行了对比与分析。结果表明:基于迁移学习的地震泥石流灾害信息检测结果在精度上稍优于面向对象的地震泥石流灾害信息检测结果,且前者在保持地震泥石流的平滑性和完整性上要优于后者。
- Abstract:
-
A lot of debris flow disasters(known as the earthquake debris-flow)occurred in post-earthquake,which cause great damage. UAV low-altitude remote sensing technology has the characteristics of convenience,timeliness and so on,and becomes a means of rapid access to disaster information. However,the spectral information of the UAV images is not enough,and it is difficult to detect the information of the earthquake debris flow disaster accurately. Taking into account of the above problems,a method based on transfer learning mechanism for earthquake debris flow detection was proposed. Based on the established earthquake debris flow disaster sample database,features trained by convolution neural network were transferred to earthquake debris flow information detection and the information was detected automatically. The earthquake debris flow information detected based on object-oriented and transfer learning were compared and analyzed. The experimental results showed that the information detection result of earthquake debris flow disaster based on transfer learning was slightly better than that of object-oriented and the former was better than the latter in maintaining smoothness and integrity of earthquake debris flow.
备注/Memo
- 备注/Memo:
-
收稿日期:2016-12-14
基金项目:国家自然科学基金青年基金项目(41701499)及四川省科技厅重点研发项目(2018GZ0265)联合资助.
通讯作者:鲁恒(1984-),博士,主要从事3S技术集成应用研究.E-mail:luheng@scu.edu.cn
更新日期/Last Update:
2018-04-23