|本期目录/Table of Contents|

[1]李华聪,钟菊芳.最强脉冲方向分量的周期特性及其影响因素分析*[J].地震研究,2021,44(01):96-104.
 LI Huacong,ZHONG Jufang.Analysis on the Period Characteristics of the Strongest Pulse Direction Component and Its Influence Factors[J].Journal of Seismological Research,2021,44(01):96-104.
点击复制

最强脉冲方向分量的周期特性及其影响因素分析*(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
44
期数:
2021年01期
页码:
96-104
栏目:
出版日期:
2021-01-15

文章信息/Info

Title:
Analysis on the Period Characteristics of the Strongest Pulse Direction Component and Its Influence Factors
作者:
李华聪12钟菊芳1
(1.南昌航空大学 土木建筑学院,江西 南昌 330063; 2.杭萧钢构股份有限公司,浙江 杭州 310003)
Author(s):
LI Huacong12ZHONG Jufang1
(1.Department of Civil Engineering,College of Civil Engineering and Architecture,Nanchang Hangkong University,Nanchang 330063,Jiangxi,China)(2.Hangxiao Steel Structure Co. Ltd.,Hangzhou 310003,Zhejiang,China)
关键词:
最强脉冲方向分量 脉冲周期 场地条件 震级 断层类型 断层距
Keywords:
strongest pulse direction component pulse period site conditions magnitude fault type fault distance
分类号:
P315.92
DOI:
-
摘要:
以NGA-West2强震数据库中的243组脉冲型地震记录为数据基础,按照我国场地分类标准对其进行分类,探讨场地条件、断层类型及断层距等对最强脉冲方向分量脉冲周期(TP)随震级(MW)变化规律的影响。结果表明:①最强脉冲方向分量与垂直断层走向分量的TP具有强线性相关性,场地条件对二者周期相关性的影响不大; ②场地土层的剪切波速越大,TP随MW增大的速率越快; ③Ⅲ类场地的TP值大于Ⅰ,Ⅱ类场地; ④最强脉冲方向分量TP随MW的增大速率要快于垂直或平行断层走向分量; ⑤在Ⅰ,Ⅱ类场地条件下,非走滑断层的TP随MW的增大速率快于走滑断层,这一规律在Ⅲ类场地条件下正好相反; ⑥3类场地非近断层区域的TP随MW的增大速率快于近断层区域。建议在使用脉冲周期与震级关系的统计模型时应考虑场地条件、断层类型、断层距及不同国家场地分类标准差异性的影响。
Abstract:
Based on the 243 sets of pulse-like seismic records in the NGA-West2 strong earthquake database,we classified the selected seismic records according to the site classification standards of China,and discussed the influences of site conditions,fault types and fault distance on the variation of pulse period TP in the strongest pulse direction with magnitudeMW.The results show that:① The TP in the strongest pulse direction has a strong linear correlation with the TP in vertical fault strike direction,and the site conditions have little effect on the correlation between the two component pulse periods.② The greater the shear wave velocity of foundation ground,the faster the TP increases with the increasing of MW.③ The predicted value of the pulse period of the class III site is greater than that of the class I site and class II site.④ TP of the strongest pulse direction component increases faster with the increasing of MW than that of the vertical or parallel fault strike component.⑤ Under the conditions of class I and II sites,the TP of non-strike-slip faults increases with the increasing of magnitude faster than that of strike-slip faults.This rule is exactly the opposite under the conditions of class III site.⑥ The TP of class I,II and III sites in non-near-fault area increases with the increasing of MW faster than that in near-fault area.It is recommended that we should consider the effects of site conditions,fault types,fault distance and differences of site classification standards in different countries when using a statistical model of the relationship between pulse period and magnitude.

参考文献/References:

常志旺.2014.近场脉冲型地震动的量化识别及特性研究[D].哈尔滨:哈尔滨工业大学.
陈志强,郑史雄,陈志伟,等.2018.近断层脉冲方向性对大跨斜拉桥地震响应的影响[J].铁道科学与工程学报,15(12):3127-3134.
郭锋,吴东明,许国富,等.2011.中外抗震设计规范场地分类对应关系[J].土木工程与管理学报,28(2):63-66.
江辉,楚芹,崔禹婷.2015.地震动脉冲参数对近断层区深水桥墩动力响应的影响分析[J].铁道学报,37(8):80-90.
罗全波,陈学良,高孟潭,等.2018.近断层速度脉冲与震源机制的关系浅析[J].震灾防御技术,13(3):646-661.
盛骤,谢式千.2004.概率论与数理统计及其应用[M].北京:高等教育出版社.
孙亦鸥.2014.近断层速度脉冲周期的研究[D].苏州:苏州科技学院.
王博,杨柯,刘伯权,等.2019.长周期地震动脉冲特性对RC框架结构响应的影响研究[J].西安建筑科技大学学报(自然科学版),51(4):538-544.
王宇航.2015.近断层区域划分及近断层速度脉冲型地震动模拟[D].成都:西南交通大学.
韦韬,赵凤新,张郁山.2006.近断层速度脉冲的地震动特性研究[J].地震学报,(6):71-79,121.
谢俊举,李小军,温增平.2017.近断层速度大脉冲对反应谱的放大作用[J].工程力学,34(8):194-211.
谢俊举,温增平,李小军,等.2012.基于小波方法分析汶川地震近断层地震动的速度脉冲特性[J].地球物理学报,55(6):1963-1972.
徐星辰.2016.脉冲型地震动及其分量作用下框架结构动力反应分析[D].哈尔滨:哈尔滨工业大学.
赵晓芬,温增平,陈波.2018.近断层地震动最强速度脉冲方向分量特性研究[J].地震学报,40(5):673-688.
Baker J W.2007.Quantitative classification of near-fault ground motions using wavelet analysis[J].Bulletin of the Seismological Society of America,97(5):1486-1501.
Boore D M.2010.Orientation-independent,nongeometric-mean measures of seismic intensity from two horizontal components of motion[J].Bulletin of the Seismological Society of America,100(4):1830-1835.
Howard J K,Tracy C A,Burns R G.2005.Comparing observed and predicted directivity in near-source ground motion[J].Earthquake Spectra,21(4):1063-1092.
Khoshnoudian F,Ahmadi E.2013.Effects of pulse period of near-field ground motions on the seismic demands of soil-MDOF structure systems using mathematical pulse models[J].Earthquake Engineering and Structural Dynamics,42(11):1565-1582.
Mavroeidis G P.2003.A mathematical representation of near-fault ground motions[J].Bulletin of the Seismological Society of America,93(3):1099-1131.
Luo Q B,Chen X L,Gao M T,et al.2019.Simulating the near-fault large velocity pulses of the Chi-Chi(MW7.6)earthquake with kinematic model[J].Journal of Seismology,23(1):25-38.
Shahi S K,Baker J W.2014.An efficient algorithm to identify strong-velocity pulses in multi-component ground motions[J].Bulletin of the Seismological Society of America,104(5):2456-2466.
Somerville P G.2003.Magnitude scaling of the near fault rupture directivity pulse[J].Physics of the Earth and Planetary Interiors,137(1):201-212.
GB 50011—2010,建筑抗震设计规范(2016版)[S].

备注/Memo

备注/Memo:
收稿日期:2020-04-29
基金项目:国家自然科学基金(51969019,51468045)、水利部公益性行业科研专项(201401009)、江西省教育厅科技项目(GJJ160703)和南昌航空大学研究生创新专项资金项目(YC2018067)联合资助.
更新日期/Last Update: 2021-01-15