|本期目录/Table of Contents|

[1]王力伟,李 丽,杨 微,等.低频可控震源激发信号特征及高精度动态监测应用[J].地震研究,2021,44(04):622-634.
 WANG Liwei,LI Li,YANG Wei,et al.Signal Characteristics of Low Frequency Vibroseis and Its Application to High Precision Dynamic Monitoring[J].Journal of Seismological Research,2021,44(04):622-634.
点击复制

低频可控震源激发信号特征及高精度动态监测应用(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
44
期数:
2021年04期
页码:
622-634
栏目:
出版日期:
2021-11-10

文章信息/Info

Title:
Signal Characteristics of Low Frequency Vibroseis and Its Application to High Precision Dynamic Monitoring
作者:
王力伟123李 丽1杨 微1王宝善14黄柳芳23
(1.中国地震局地球物理研究所,北京 100081; 2.广东省地震局 中国地震局地震监测与减灾技术重点实验室,广东 广州 510070; 3.广东省地震局 广东省地震预警与重大工程安全诊断重点实验室,广东 广州 510070; 4.中国科学技术大学 地球和空间科学学院,安徽 合肥 230026)
Author(s):
WANG Liwei123LI Li1YANG Wei1WANG Baoshan14HUANG Liufang23
(1.Institute of Geophysics,China Earthquake Administration,Beijing 100081,China;2.CEA Key Laboratory of Earthquake Monitoring and Disaster Mitigation Technology,Guangdong Earthquake Agency,Guangzhou 510070,Guangdong,China;3.Guangdong Provincial Key Laboratory of Earthquake Early Warning and Safety Diagnosis of Major Projects,Guangdong Earthquake Agency,Guangzhou 510070,Guangdong,China;4.School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,Anhui,China)
关键词:
低频可控震源 聚类分析 反褶积 加权相位叠加 波速变化 高精度动态监测
Keywords:
low frequency vibroseis cluster analysis deconvolution phase-weighted stack velocity changes high precision dynamic monitoring
分类号:
P315.3
DOI:
-
摘要:
通过实验测试了国产KZ28LF低频可控震源在线性升频、伪随机编码和单频3种激发模式下的信号特征及在地下介质高精度动态监测中的应用效果。结果表明:①线性升频和伪随机编码激发模式可稳定激发1.5~12 Hz的低频信号,近场信号互相关系数大于0.95的分别占81%和63%,信号能量在9~12 Hz较强、在1.5~9 Hz较弱,低频外传能量较弱,而单频激发时高次谐波能量较强,信号重复性较差。②相干法和反褶积法均能压缩震源子波,恢复介质真实响应,相干法的结果重复性和信噪比最高,反褶积法保幅和保相效果最好。③叠加后探测距离可达20 km,波速变化探测精度达10-4
Abstract:
The low frequency vibroseis can generate broad band,low energy density and high repeatable signals with frequencies as low as 1.5 Hz,which is particularly suitable for high resolution exploration and regional seismological research.In order to evaluate its signal characteristics and feasibility in high precision dynamic monitoring,we conduct a field experiment on KZ28LF low frequency vibroseis.We found that it can stably generate low frequency signals in 1.5~12 Hz in upsweeping and pseudorandom sweeping mode,the near field energy is strong in 9~12 Hz and weak in 1.5~9 Hz,and the waveform correlation coefficient is greater than 0.95,accounting for 81% and 63% respectively,but it is still difficult to put sufficient energy into the ground in low frequency band.The signal repeatability is low and the harmonic energy is strong in single frequency excitation mode.Both the coherent and deconvolution method can successfully compress the source wavelet and restore the interpretable record,but the repeatability and signal-to-noise ratio of coherent method is higher,and the deconvolution result can keep a higher fidelity in phase and amplitude.After phase-weighted stacking,the max recording offsets can reach more than 20 km,and the monitoring precision of seismic velocity changes can reach up to ~10-4.The result can provide a reference for high resolution monitoring of active fault zones,earthquake nucleation process and land slip.

参考文献/References:

顾庙元,姚佳琪,张伟,等.2016.地学长江计划安徽实验中低频可控震源地震波信号提取方法评估[J].中国地震,32(2):356-378.
蒋生淼,王宝善,张云鹏,等.2017.噪声对气枪信号叠加效果的影响及自动数据筛选方法[J].地震研究,40(4):534-542.
陶知非,苏振华,赵永林,等.2010.可控震源低频信号激发技术的最新进展[J].物探装备,20(1):1-5.
陶知非,徐小刚,骆飞,等.2018.LFV3低频可控震源技术与应用效果[J].物探装备,28(1):1-3.
陶知非,徐小刚.2017.再论可控震源输出信号畸变的问题[J].物探装备,27(6):351-355.
陶知非.1995.可控震源与高分辨率地震勘探[J].石油物探装备,5(4):1-9.
王秋成,王梅生,孙哲,等.2019.可控震源动态扫描高效采集实时质控要点分析[J].物探装备,29(3):141-146.
王伟涛,王宝善.2012.基于聚类分析的多尺度相似地震快速识别方法及其在汶川地震东北端余震序列分析中的应用[J].地球物理学报,55(6):1952-1962.
谢凡,夏开文,黄会宝,等.2020.基于多重散射波波速变化的滑坡实时监测方法与应用研究[J].岩石力学与工程学报,39(11):2274-2282.
杨承先.1983.河北徐水—文安地区第三纪伸展断裂的地质特征及其活动性分析[J].地震,(5):34-36,45.
杨微,王宝善,葛洪魁,等.2013.精密控制机械震源特征及信号检测方法[J].中国石油大学学报(自然科学版),37(1):50-69.
张元生,王宝善,陈颙,等.2017.两次强震发生前后主动源观测走时数据的变化[J].地球物理学报,60(10):3815-3822.
Bensen G D,Ritzwoller M H,Barmin M P,et al.2007.Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J].Geophysical Journal International,169(3):1239-1260.
Brenguier F,Campillo M,Takeda T,et al.2014.Mapping pressurized volcanic fluids from induced crustal seismic velocity drops[J].Science,345(6192):80-82.
Brittle K F,Lines L R,Dey A K.2001.Vibroseis deconvolution:a comparison of cross-correlation and frequency-domain sweep deconvolution[J].Geophysical Prospecting,49(6):675-686.
Cao H T.2016.Comparisons of seismic interferometry by cross correlation,deconvolution and cross coherence[D].Houghton:Michigan Technological University.
Chaves E J,Schwartz S Y,Abercrombie R E.2020.Repeating earthquakes record fault weakening and healing in areas of megathrust postseismic slip[J].Science Advances,6(32):1-8.
Chen Y,Wang B S,Yao H J.2017.Seismic airgun exploration of continental crust structures[J].Science China Earth Sciences,60(10):1739-1751.
Clymer R W,McEvilly T V.1981.Travel-time monitoring with vibroseis[J].Bulletin of the Seismological Society of America,71(6):1903-1927.
Cunningham A B.1979.Some alternate vibrator signals[J].Geophysics,44:1901-1921.
Dean T.2014.The use of pseudorandom sweeps for vibroseis surveys[J].Geophysical Prospecting,62(1):50-74.
Godfrey H J,Fry B,Savage M K.2017.Shear-wave velocity structure of the Tongariro Volcanic Centre,New Zealand:Fast Rayleigh and slow Love waves indicate strong shallow anisotropy[J].Journal of Volcanology and Geothermal Research,336:33-50.
Hillers G,Ben-Zion Y,Campillo M,et al.2015.Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise[J].Geophysical Journal International,202(2):920-932.
Ikuta R,Yamaoka K,Miyakawa K,et al.2002.Continuous monitoring of propagation velocity of seismic wave using ACROSS[J].Geophysical Research Letters,29(13):1627.
Kennett B L N.2000.RESEARCH NOTE:Stacking three-component seismograms[J].Geophysical Journal International,141(1):263-269.
Klauder J R.1960.The design of radar signals having both high range resolution and high velocity resolution[J].Bell System Technical Journal,39(4):809-820.
Korneev V A,McEvilly T V,Karageorgi E D.2000.Seismological studies at Parkfield VIII:Modeling the observed travel-time changes[J].Bulletin of the Seismological Society of America,90(3):702-708.
Krohn C,Johnson M,Ho R.2010.Vibroseis productivity:shake and go[J].Geophysical Prospecting,58(1):101-122.
Lance G N,Williams W T.1967.A general theory of classificatory sorting strategies:1.hierarchical systems[J].The Computer Journal,9(4):373-380.
Lebedev A V,Beresnev I A.2004.Nonlinear distortion of signals radiated by vibroseis sources[J].Geophysics,69(4):877-1103.
Li L,Niu F L,Chen Q F,et al.2017.Post-seismic velocity changes along the 2008 M7.9 Wenchuan earthquake rupture zone revealed by S coda of repeating events[J].Geophysical Journal International,208(2):1237-1249.
Liu Z K,Huang J L,Peng Z G,et al.2014.Seismic velocity changes in the epicentral region of the 2008 Wenchuan earthquake measured from three-component ambient noise correlation techniques[J].Geophysical Research Letters,41(1):37-42.
Mao S J,Campillo M,Van der Hilst R D,et al.2019.High temporal resolution monitoring of small variations in crustal strain by dense seismic Arrays[J].Geophysical Research Letters,46(1):128-137.
McCartney J S,Cox B R.2013.Role of strain magnitude on the deformation response of geosynthetic-reinforced soil layers[J].Geosynthetics International,20(3):174-190.
Mehta K,Snieder R,Graizer V.2007.Downhole receiver function:a case study[J].Bulletin of the Seismological Society of America,97(5):1396-1403.
Nagarajappa N,Wilkinson D.2010.Source measurement effect on high fidelity vibratory seismic separation[J].Geophysical Prospecting,58(1):55-67.
Niu F L,Silver P G,Daley T M,et al.2008.Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site[J].Nature,454(7201):204-208.
Niu F L,Silver P G,Nadeau R M,et al.2003.Migration of seismic scatterers associated with the 1993 Parkfield aseismic transient event[J].Nature,426(6966):544-548.
Peng Z G,Ben-Zion Y.2006.Temporal changes of shallow seismic velocity around the Karadere-Düzce Branch of the North Anatolian Fault and strong ground motion[J].Pure and Applied Geophysics,163(2):567-600.
Pevzner R,Shulakova V,Kepic A,et al.2011.Repeatability analysis of land time-lapse seismic data:CO2CRC Otway pilot project case study[J].Geophysical Prospecting,59(1):66-77.
Poletto F,Schleifer A,Zgauc F,et al.2016.Acquisition and deconvolution of seismic signals by different methods to perform direct ground-force measurements[J].Journal of Applied Geophysics,135(SI):191-203.
Rowe C A,Aster R C,Borchers B,et al.2002.An automatic,adaptive algorithm for refining phase picks in large seismic data sets[J].Bulletin of the Seismological Society of America,92(5):1660-1674.
Sallas J.1984.Seismic vibrator control and the down going P-wave[J].Geophysics,49:732-740.
Sallas J.2010.How do hydraulic vibrators work? A look inside the black box[J].Geophysical Prospecting,58(1):3-17.
Silver P G,Daley T M,Niu F L,et al.2007.Active source monitoring of cross-well seismic travel time for stress-induced changes[J].Bulletin of the Seismological Society of America,97(1):281-293.
Sneath P H A,Sokal R R,Freeman W H.1973.Numerical taxonomy.The principles and practice of numerical classification[M].United states of America:W H freeman and company.
Son M,Cho C S,Shin J S,et al.2018.Spatiotemporal distribution of events during the first three months of the 2016 Gyeongju,Korea,Earthquake Sequence[J].Bulletin of the Seismological Society of America,108(1):210-217.
Tal B,Bencze A,Zoletnik S,et al.2011.Cross-correlation based time delay estimation for turbulent flow velocity measurements:Statistical considerations[J].Physics of Plasmas,18(12):122304.
Wang B S,Yang W,Wang W T,et al.2020.Diurnal and semidiurnal P- and S-Wave velocity changes measured using an airgun source[J].Journal of Geophysical Research:Solid Earth,125(1):e2019 JB018218.
Wang B S,Zhu P,Chen Y,et al.2008.Continuous subsurface velocity measurement with coda wave interferometry[J].Journal of Geophysical research:Solid Earth,113(B12):B12313.
Wapenaar K,Draganov D,Snieder R.et al.2010.Tutorial on seismic interferometry:Part 1 — Basic principles and applications[J].Geophysics,75(5):195-209.
Wapenaar K,Fokkema J.2006.Green’s function representations for seismic interferometry[J].Geophysics,71(4):SI33-SI46.
Wei Z H,Phillips T F,Hall M A.2010.Fundamental discussions on seismic vibrators[J].Geophysics,75(6):W13-W25.
Wei Z H,Phillips T F.2013.On the generation of low frequencies with modern seismic vibrators[J].Geophysics,78(2):WA91-WA97.
Yamamura K,Sano O,Utada H,et al.2003.Long-term observation of in situ seismic velocity and attenuation[J].Journal of Geophysical Research:Solid Earth,108(B6):2317.
Yang W,Wang B S,Yuan S Y,et al.2018.Temporal variation of seismic-wave velocity associated with groundwater level observed by a downhole airgun near the Xiaojiang Fault Zone[J].Seismological Research Letters,89(3):1014-1022.
Zaliapin I,Ben-Zion Y.2013.Earthquake clusters in southern California II:Classification and relation to physical properties of the crust[J].Journal of Geophysical Research:Solid Earth,118(6):2865-2877.
Zhan Z W,Tsai V C,Clayton R W.2013.Spurious velocity changes caused by temporal variations in ambient noise frequency content[J].Geophysical Journal International,194(3):1574-1581.

备注/Memo

备注/Memo:
收稿日期:2021-04-30
基金项目:国家自然科学基金(41474114)和中国地震局地震科技星火计划项目(XH18034Y)联合资助.

更新日期/Last Update: 2021-11-10