|本期目录/Table of Contents|

[1]刘 洁,李 营,陈 志,等.陇县—宝鸡断裂带CO2气体地球化学特征及成因[J].地震研究,2022,45(02):217-228.[doi:10.20015/j.cnki.ISSN1000-0666.2022.0020]
 LIU Jie,LI Ying,CHEN Zhi,et al.Geochemical Characteristics and Genesis of Soil Gas CO2 in the Longxian-Baoji Fault Zone[J].Journal of Seismological Research,2022,45(02):217-228.[doi:10.20015/j.cnki.ISSN1000-0666.2022.0020]
点击复制

陇县—宝鸡断裂带CO2气体地球化学特征及成因(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
45
期数:
2022年02期
页码:
217-228
栏目:
出版日期:
2022-05-20

文章信息/Info

Title:
Geochemical Characteristics and Genesis of Soil Gas CO2 in the Longxian-Baoji Fault Zone
作者:
刘 洁1李 营2陈 志2王 新1赵小茂1冯希杰1王景丽1
(1.陕西省地震局,陕西 西安 710068; 2.中国地震局地震预测研究所 中国地震局地震预测重点实验室,北京 100036)
Author(s):
LIU Jie1LI Ying2CHEN Zhi2WANG Xin1ZHAO Xiaomao1FENG Xijie1WANG Jingli1
(1.Shaanxi Earthquake Agency,Xi’an 710068,Shaanxi,China)(2.Institute of Earthquake Forecasting and Key Laboratory of Earthquake Prediction,China Earthquake Administration,Beijing 100036,China)
关键词:
土壤气CO2 气体活动强度 碳稳定同位素 断层活动性
Keywords:
soil gas CO2 intensity of gas activity stable carbon isotope fault activity
分类号:
P315.724
DOI:
10.20015/j.cnki.ISSN1000-0666.2022.0020
摘要:
陇县—宝鸡断裂带位于青藏块体东北缘,属于鄂尔多斯块体西南缘弧形断裂束的最南段。为对比分析该断裂带的分段活动性强弱特征,利用断裂带逸出气CO2的地球化学特征进行反演。布设6条跨断层土壤气CO2测线,进行2期测量,共计获取150个土壤气CO2组分浓度,计算了气体的相对活动强度; 收集了60件CO2气体样品,测试了其碳同位素组成。结果表明:岐山—马召断裂的气体活动强度(1.56~2.70)比固关—虢镇断裂的气体活动强度(1.73~1.75)大,且岐山—马召断裂上的CO2碳同位素组成比固关—虢镇断裂上的CO2更靠近深部物质端元。位于南段的岐山—马召断裂的地下构造连通性较好,断裂闭锁程度较低,而位于北段的固关—虢镇断裂气体活动性较弱,闭锁程度较高,未来发生地震的危险性较高。
Abstract:
The Longxian-Baoji Fault Zone is located in the northeast edge of the Qinghai-Tibet Block and belongs to the southernmost segment of the arc fault belt in the southwest edge of the Ordos Block.To compare the activity of the Qishan-Mazhao Fault in the south of the Longxian-Baoji Fault Zone with the activty of the Guguan-Guozhen Fault in the north,we study the geochemical features of the soil gas CO2 in the faults.Six survey profiles for surveying CO2 are deployed across the two faults and two periods of observation are carried out.We obtain 150 observed values of CO2 component concentrations.In addition,we collect 60 CO2 samples for stable carbon isotopic composition measurements.We find that the intensity(1.56-2.70)of CO2 activity in the Qishan-Mazhao Fault is greater than that(1.73-1.75)in the Guguan-Guozhen Fault.And the source of the CO2 in the Qishan-Mazhao Fault is closer to the end member of the deep materials.This suggests that the connectivity of the underground structures of the Qishan-Mazhao Fault is better and the fault’s locking degree is lower.Meanwhile,the gas activity in the Guguan-Guozhen Fault is weaker and the fault’s locking degree is higher.Thus,the earthquake risk in this fault zone is higher.

参考文献/References:

杜方,闻学泽,冯建刚,等.2018.六盘山断裂带的地震构造特征与强震危险背景[J].地球物理学报,61(2):545-559.
杜建国,刘从强.2003.同位素地球化学在地震研究方面的作用[J].地震,23(2):99-107.
高曙德,赵洁,王爱国,等.2021.西秦岭北缘断裂带土壤气定点监测与初步结果分析[J].地震工程学报,43(5):1001-1007.
韩晓昆.2014.首都圈地震重点监测区土壤气体地球化学[D].北京:中国地震局地震预测研究所.
李强.2013.汶川地震后青藏高原东北缘GPS地壳形变场特征研究[D].北京:中国地震局地震预测研究所.
李新男.2017.鄂尔多斯西南缘活动构造几何图像,运动特征及构造变形模式[D].北京:中国地震局地质研究所.
李营,杜建国,王富宽,等.2009.延怀盆地土壤气体地球化学特征[J].地震学报,31(1):82-91.
刘兆飞.2020.鄂尔多斯盆地西缘断裂带气体地球化学特征[D].北京:中国地震局地震预测研究所.
马致远,吴敏,郑会菊,等.2018.对关中盆地腹部深层地下热水δ18O富集[J].地质通报,37(2):487-495.
邵永新.2012.土壤氡方法用于断层活动性研究的讨论[J].中国地震,28(1):51-60.
孙小龙,刘耀炜,付虹,等.2020.我国地震地下流体学科分析预报研究进展回顾[J].地震研究,43(2):216-232.
王小娟,韩晓昆,陈志,等.2016.六盘山东麓断裂带逸出气氡浓度特征分析[J].地震工程学报,38(增刊2):276-281.
王云,赵慈平,冉华,等.2015.地壳流体CO2的释放与地震关系:回顾与展望[J].地震研究,38(1):119-130.
薛峰.2014.六盘山地区现今三维地壳运动与变形特征研究[D].兰州:中国地震局兰州地震研究所.
叶茂盛,孟国杰,苏小宁,等.2018.青藏高原东北缘主要断裂闭锁特征和滑动亏损研究[J].地震,38(3):1-12.
约享.霍夫斯.2012.稳定同位素地球化学[M].吴石头,王洋洋,肖益林,译.北京:地质出版社.
张新科,邵辉成,冯亮亮,等.2017.陇县—宝鸡断裂带地震活动分析[J].高原地震,29(1):19-25.
张扬,戴波,周晓成.2016.郯庐断裂带江苏段土壤气体地球化学特征研究[J].地震研究,39(3):444-450.
周晓成,孙凤霞,陈志,等.2017.汶川MS8.0地震破裂带CO2、CH4、Rn和Hg脱气强度[J].岩石学报,33(1):291-303.
Annunziatellis A,Beaubien S E,Bigi S,et al.2008.Gas migration along fault systems and through the vadose zone in the Latera caldera(central Italy):Implications for CO2 geological storage[J].International Journal of Greenhouse Gas Control,2(3):353-372.
Bond C E,Kremer Y,Johnson G,et al.2017.The physical characteristics of a CO2 seeping fault:The implications of fracture permeability for carbon capture and storage integrity[J].International Journal of Greenhouse Gas Control,61:49-60.
Br?uer K,K?mpf H,Koch U,et al.2007.Seismically induced chanfes of the fluid signature detected by a muti-isotope approach(He,CO2,CH4,N2)at the Wettinguelle,Bad Brambach(central Europe)[J].Journal of Geophysical Research:Solid Earth,112(B4):1-15.
Chen Z,Li Y,Martinelli G,et al.2020.Spatial and temporal variations of CO2 emissions from the active fault zones in the capital area of China[J].Applied Geochemistry,112:104489.
Fu C C,Yang T,Chen C H,et al.2017.Exploring the relationship between soil degassing and seismic activity by continuous radon monitoring in the Longitudinal Valley of eastern Taiwan[J].Chemical Geology,469:163-175.
Giammanco S,Gurrieri S,Valenza M.1998.Anomalous soil CO2,degassing in relation to faults and eruptive fissures on Mount Etna(Sicily,Italy)[J].Bulletin of Volcanology,60(4):252-259.
King C Y,King B S,Evans W C,et al.1996.Spatial radon anomalies on active faults in California[J].Applied Geochemistry,11(4):497-510.
Li X N,Feng X J,Li G Y,et al.2019.Geological and geomorphological evidence for active faulting of the southern Liupanshan fault zone,NE Tibetan Plateau[J].Geomorphology,345(15):106849.
Li Y,Du J G,Wang X,et al.2013.Spatial variations of soil gas geochemistry in the Tangshan Area of Northern China[J].Terrestrial Atmospheric and Oceanic Sciences,24(3):323-332.
Ma Z Y,Yu J,Yan S,et al.2010.δ18O shifts of geothermal waters in the central of Weihe Basin,NW China[J].Environmental Earth Science,59(5):995-1008.
Martino R,Capasso G,Camarda M.2016.Spatial domain analysis of carbon dioxide from soils on Vulcano Island:Implications for CO2 output evaluation[J].Chemical Geology,444:59-70.
Seminsky K Z,Demberel S.2013.The first estimations of soil-radon activity near faults in Central Mongolia[J].Radiation Measurements,49(1):19-34.
Su X N,Yao Y B,Wu W W,et al.2019.Crustal deformation on the Northeastern Margin of the Tibetan Plateau from continuous GPS Observations[J].Remote Sensing,11(1),34:1-21.
Sun X L,Yang P T,Yang X,et al.2018.Across-fault distributions of radon concentrations in soil gas for different tectonic environments[J].Geoences Journal,22:227-239.
Walia V,Yang T F,Hong W L,et al.2009.Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J].Applied Radiation & Isotopes,67(10):1855-1863.
Wang G,Liu C,Wang J,et al.2006.The use of soil mercury and radon gas surveys to assist the detection of concealed faults in Fuzhou City,China Environmental Geology,51(1):83-90.
Wang S D,Shi Y Q,Feng X J,et al.2021.Late Quaternary sinistral strike-slipping of the Liupanshan-Baoji fault zone:Implications for the growth of the northeastern Tibetan Plateau[J].Geomorphology,380(8):107628.
Wang X,Li Y,Du J G,et al.2014.Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area,North China[J].Radiation Measurements,60:8-14.
Weise S M,Br?uer K,K?mpf H,et al.2001.Transport of mantle volatiles through the crust traced by seismically released fluids:a natural experiment in the earthquakeswarm area Vogtland/NW Bohemia Central Europe[J].Tectonophysics,336(1-4):137-150.
Yang Y,Li Y,Li Y G,et al.2021.Present-day activity of the Anninghe Fault and Zemuhe Fault,Southeastern Tibetan Plateau,derived from soil gas CO2 emissions and locking degree[J].Earth and Space Science,10.1029/2020EA001607.
Zhou H,Su H,Zhang H,et al.2020.Geochemical characteristics of soil gas and strong seismic hazard potential in the Liupanshan Fault Zone(LPSFZ)[J].Geofluids,(7):1-14.
Zhou Z H,Tian L,Zhao J,et al.2020.Stress-related pre-seismic water radon concentration variations in the Panjin observation well,China(1994-2020)[J].Frontiers in Earth Science,8:596283.
Zhou Z H,Zhong J,Zhao J,et al.2021.Two mechanisms of earthquake-induced hydrochemical variations in an observation well[J]. Water,13:2385.

备注/Memo

备注/Memo:
收稿日期:2021-11-23
基金项目:中国地震局地震预测开放基金(2021EFOF03)、陕西省自然科学基金(2022JQ-254)和中国地震局震情跟踪定向工作任务(2022010502、2021010309)联合资助.

更新日期/Last Update: 2022-05-20