|本期目录/Table of Contents|

[1]魏海滨,谷洪彪,孔慧敏,等.云南会泽井水位对2014年鲁甸MS6.5地震同震响应过程模拟[J].地震研究,2022,45(02):329-339.[doi:10.20015/j.cnki.ISSN1000-0666.2022.0028]
 WEI Haibin,GU Hongbiao,KONG Huimin,et al.Modeling the Coseismic Response Process of the Water Level to the 2014 Ludian MS6.5 Earthquake:A Case Study of Huize Well[J].Journal of Seismological Research,2022,45(02):329-339.[doi:10.20015/j.cnki.ISSN1000-0666.2022.0028]
点击复制

云南会泽井水位对2014年鲁甸MS6.5地震同震响应过程模拟(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
45
期数:
2022年02期
页码:
329-339
栏目:
出版日期:
2022-05-20

文章信息/Info

Title:
Modeling the Coseismic Response Process of the Water Level to the 2014 Ludian MS6.5 Earthquake:A Case Study of Huize Well
作者:
魏海滨12谷洪彪12孔慧敏123迟宝明123
(1.防灾科技学院,河北 三河 065201; 2.河北省地震动力重点实验室,河北 三河 065201; 3.中国地震局工程力学研究所,黑龙江 哈尔滨 150006)
Author(s):
WEI Haibin12GU Hongbiao12KONG Huimin123CHI Baoming123
(1.Institute of Disaster Prevention,Sanhe 065201,Heibei,China)(2.Heibei Key Laboratory of Earthquake Dynamics,Sanhe 065201,Heibei,China)(3.Institute of Engineering Mechanics,China Earthquake Administration,Heilongjiang 150080,Harbin,China)
关键词:
会泽井 鲁甸地震 井水位 同震响应 数值模拟
Keywords:
Huize Well the Ludian earthquake water-level coseismic response numerical simulation
分类号:
P315.723
DOI:
10.20015/j.cnki.ISSN1000-0666.2022.0028
摘要:
为定量刻画地壳应力-应变改变、含水层孔压扰动及井孔水位变化之间的耦合过程,促进对近场地震水位同震响应机制的理解,利用多场耦合数值模拟方法,获得鲁甸地区(200×200)km2范围内,2014年鲁甸MS6.5地震造成的同震静态应变场分布、孔压演化规律及会泽井水位响应曲线,并以渗透系数、杨氏模量及孔隙度为变量,设计6组不同模拟情景对影响研究区孔压演化的参数进行分析。结果表明:①鲁甸地震造成的同震静态应变场沿断层两侧呈四象限分布,应变场极值点分布在断层北段两侧,远离断层体应变数值逐渐减小; ②地震造成研究区含水层孔压扰动在50 d内恢复至震前稳定值,孔压的扩散时间受渗透系数及杨氏模量的影响; ③模拟所得会泽井水位受地震影响瞬时上升0.45 m,并在震后50 d内恢复至震前水位,水位变化趋势为阶升之后缓慢恢复,模拟水位与实测水位变化趋势相近。
Abstract:
In order to quantitatively characterize the coupling process of the variation of the water level in Huize Well with the variation of the crustal stress and strain,the disturbance of the pore pressure in the confined aquifer,and in order to deepen the understanding of the mechanism of the coseismic response of the near-field water level in the Well,a numerical simulation of multi-field coupling is used to obtain the coseismic static strain field,the evolution law of pore pressure,and the simulated curves of the water level in Huize Well caused by the 2014 Ludian MS6.5 earthquake within the range of 200 km×200 km in Ludian region.Then,after the permeability coefficient(K),Young’s modulus(E)and porosity(n)are set as variables,six groups of different working conditions are designed to analyze the parameters affecting the evolution of pore pressure in the study area.The results show that:①The coseismic static strain field caused by the Ludian earthquake is distributed in four quadrants along both sides of the fault,and the extreme values of the strain field are distributed on both sides of the northern section of the fault,and the strain values gradually decrease when they are getting further away from the fault body; ②The disturbance of the pore pressure in the confined aquifer in the study area caused by the earthquake returns to the normal state in 50 days after the Ludian earthquake,and the diffusion time of the pore pressure is affected by the permeability coefficient(K)and Young’s modulus(E); ③The simulated water level in Huize Well rises by 0.45 m instantaneously due to the Ludian earthquake,and returns to a normal level 50 days after the earthquake.The simulated coseismic variation of the water level is similar to the actual coseismic variation of the water level in Huize well.

参考文献/References:

房立华,吴建平,王未来,等.2014.云南鲁甸MS6.5地震余震重定位及其发震构造[J].地震地质,36(4):1173-1185.
李西,张建国,谢英情,等.2014.鲁甸MS6.5地震地表破坏及其与构造的关系[J].地震地质,36(4):1280-1291.
李艳娥,陈学忠,陈丽娟,等.2015.2014年8月3日云南鲁甸6.5级地震序列破裂过程研究[J].地球物理学报,58(9):3232-3238.
李悦.2011.地震导致的井-含水层系统应变与地下水位变化关系研究[D].北京:中国地质大学.
史浙明.2015.地下水位同震响应特征及机理研究[D].北京:中国地质大学.
魏海滨.2021.会泽井水位对鲁甸地震同震响应数值模拟[D].三河:防灾科技学院.
徐锡伟,江国焰,于贵华,等.2014.鲁甸6.5级地震发震断层判定及其构造属性讨论[J].地球物理学报,57(9):3060-3068.
张勇,陈运泰,许力生,等.2015.2014年云南鲁甸MW6.1地震:一次共轭破裂地震[J].地球物理学报,58(1):153-162.
Cheng J,Wu Z L,Liu J,et al.2015.Preliminary report on the 3 August 2014,MW6.2/MS6.5 Ludian,Yunnan–Sichuan Border,Southwest China,Earthquake[J].Seismological Research Letters,86(3):750-763.
Elkhoury J E,Niemeijer A,Brodsky E E,et al.2011.Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured rock[J].Journal of Geophysical Research:Solid Earth,116,B02311,doi:10.1029/2010JB007759,2011.
Ge S,Stover S C.2000.Hydrodynamic response to strike- and dip-slip faulting in a half-space[J].Journal of Geophysical Research:Solid Earth,105(B11):25513-25524.
Grecksch G,Roth F.1999.Coseismic well-level changes due to the 1992 Roermond earthquake compared to static deformation of half-space solutions[J].Geophysical Journal International,138(2):470-478.
Itaba S,Koizumi N,Toyoshima T,et al.2008.Groundwater changes associated with the 2004 Niigata-Chuetsu and 2007 Chuetsu-Oki earthquakes[J].Earth,Planets&Space,60(12):1161-1168.
Jónsson S,Segall P,Pedersen R,et al.2003.Post-earthquake ground movements correlated to pore-pressure transients[J].Nature,424(6945):179-183.
Lei Q,Doonechaly N G,Tsang C F.2021.Modelling fluid injection-induced fracture activation,damage growth,seismicity occurrence and connectivity change in naturally fractured rocks[J].International Journal of Rock Mechanics and Mining Sciences,138(6142):104598.
Manga M,Beresnev I,Beodsky E E,et al.2012.Changes in permeability caused by transient stresses:Field observations,experiments,and mechanisms[J].Reviews of Geophysics,50(2):2004-2023.
Nespoli M,Todesco M,Serpelloni E,et al.2016.Modeling earthquake effects on groundwater levels:evidences from the 2012 Emilia earthquake(Italy)[J].Geofluids,16(3):452-463.
Okada.1992.Internal deformation due to shear and tensile faults in a half-space[J].Bull Seismol Soc Am,92(2):1018-1040.
Quilty E G,Roeloffs E A.1997.Water-level changes in response to the 20 December 1994 Earthquake near Parkfield,California[J].Bulletin of the Seismological Society of America,87(2):310-317.
Roeloffs E A,Evelyn A.1998.Persistent water level changes in a well near Parkfield,California,due to local and distant earthquakes[J].Journal of Geophysical Research Atmospheres,103(B1):869-889.
Roeloffs E A.1996.Poloelastic techniques in the study of earthquake-related hydrologic phenomena[J].Advances in Geophysics,37:135-195.
Sun X L,Xiang Y,Shi Z M,et al.2019.Sensitivity of the response of well-aquifer systems to different periodic loadings:a comparison of two wells in Huize,China[J].Journal of Hydrology,572(2019):121-130.
Wakita H.1975.Water wells as possible indicators of tectonic strain[J].Science,189(4202):553-555.
Wang C Y,Chia Y,Wang P L,et al.2009.Role of S waves and Love waves in coseismic permeability enhancement[J].Geophysical Research Letters,36(9),doi:10.1029/2009GL037330.2009.
Wang C Y,Manga M.2009.Earthquakes and water[M].Berlin Heidelberg Springer,74-76.
Zhang M,Ge S,Yang Q,et al.2020.Impoundment-associated hydro-mechanical changes and regional seismicity near the Xiluodu Reservoir,Southwestern China[J].Jorunal of Geophysical Research:solid Earth,126(9),doi:10.1029/2020JB021590.

备注/Memo

备注/Memo:
收稿日期:2022-02-22
基金项目:国家自然科学基金项目(41877205)和中国地震局地震科技星火计划项目(XH19070)联合资助.

更新日期/Last Update: 2022-05-20