|本期目录/Table of Contents|

[1]王晓涛,丁风和,张燕霞,等.贺兰山东麓断裂地下水水文地球化学特征[J].地震研究,2023,46(01):13-25.[doi:10.20015/j.cnki.ISSN1000-0666.2023.0002 ]
 WANG Xiaotao,DING Fenghe,ZHANG Yanxia,et al.Hydrogeochemical Characteristics of the Groundwater in the Eastern Piedmont Fault of the Helan Mountains[J].Journal of Seismological Research,2023,46(01):13-25.[doi:10.20015/j.cnki.ISSN1000-0666.2023.0002 ]
点击复制

贺兰山东麓断裂地下水水文地球化学特征(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
46
期数:
2023年01期
页码:
13-25
栏目:
地震地下流体监测预报理论及技术应用专栏
出版日期:
2023-01-01

文章信息/Info

Title:
Hydrogeochemical Characteristics of the Groundwater in the Eastern Piedmont Fault of the Helan Mountains
作者:
王晓涛丁风和张燕霞李新艳贺嘉伟
(宁夏回族自治区地震局,宁夏 银川 750001)
Author(s):
WANG XiaotaoDING FengheZHANG YanxiaLI XinyanHE Jiawei
(Earthquake Agency of Ningxia Hui Autonomous Region,Yinchuan 750001,Ningxia,China)
关键词:
地下水 贺兰山东麓断裂 水文地球化学 氢氧同位素 微量元素
Keywords:
groundwater the Eastern Piedmont Fault of the Helan Mountains hydrogeochemistry hydrogen and oxygen isotopes trace elements
分类号:
P315.724
DOI:
10.20015/j.cnki.ISSN1000-0666.2023.0002
摘要:
以贺兰山东麓断裂带内地下水为研究对象,运用Piper三线图、离子比值等方法对研究区内丰水期与枯水期地下水的水化学特征进行分析,探讨了断裂与水化学组成及地震活动的关系,并建立贺兰山东麓地区地下水成因模型。结果表明:①区域地下水总体偏弱碱性,阳离子以Ca2+和Na+为主,阴离子以HCO-3和SO2-4为主; ②区域地下水主要受大气降水补给,补给高程为1.07~2.04 km。Na-K-Mg三角图显示,研究区地下水为“未成熟水”。绝大多数水样的矿物饱和指数SI<0,表明区域地下水中各个离子含量大体处于未饱和状态。利用温标法估算该区域地下水的热储温度为74.6 ℃~114.1 ℃,循环深度为1.7~2.8 km; ③地下水样中的Sr、Ba、Li等微量元素富集因子EF>1,富集程度高,其余大部分微量元素含量较低,说明当地地下水为未成熟水,矿化度低,水岩反应程度不强。④研究区地下水出露点主要沿贺兰山东麓断裂展布,水温、矿化度、矿物饱和指数及水循环深度呈北高南低的分布特征,水化学组分高值区内小震活动频度高但强度弱。⑤研究区地下水在附近山区接受大气降水入渗补给,在地下循环过程中被大地热流加热,期间与围岩发生一系列水岩反应,后沿断裂上升以温泉的形式出露地表。
Abstract:
In this study,10 groundwater samples were collected in the Eastern Piedmont Fault of the Helan Mountains to investigate the hydrogeochemical characteristics during the flood and dry season by various methods,such as Piper trilinear diagrams and ion ratios.We also discussed how the Eastern Piedmont Fault of the Helan Mountains was related with the chemical composition of the groundwater and the earthquake activity. We further built a model illustrating the genesis of the groundwater in this area.The results show that:① The groundwater is generally alkaline in this area.The main cations in groundwater samples are Ca2+and Na+,while the main anions are HCO-3 and SO2-4.② Hydrogen and oxygen isotopes indicate that precipitation is the main source of recharge for groundwater in the study area,and the recharge height is between 1.07 km and 2.04 km.Almost all groundwater in the study area is “immature water” with a weak degree of water-rock reaction.The mineral saturation index in most water samples is less than 0,indicating that the content of each ion in the regional groundwater is generally in an unsaturated state.The geothermal reservoir temperature calculated is 74.6 ℃—114.1 ℃,and the circulation depth ranges from 1.8 km to 2.7 km.③ Most of the trace elements enrichment factors(EF)are less than 1,indicating that the groundwater is “immature”with low mineralization.The degree of water-rock reaction was relatively weak.④ Water temperature,mineralization,mineral saturation index and water circulation depth is high in the north part and low in the south part.The small earthquakes's activity has a high frequency but weak intensity in high value zone of hydrochemical components.⑤ Groundwater in the study area is recharged by infiltration of atmospheric precipitation in the nearby mountains,and the groundwater during subsurface circulation is heated by the Earth's heat flow.The groundwater reacts with the surrounding rock and eventually rises along the fracture to the surface as hot springs.

参考文献/References:

邓起东,汪一鹏,廖玉华,等.1984.断层崖崩积楔及贺兰山山前断裂全新世活动历史[J].科学通报,29(9):557-560.
董云鹏,李玮,张菲菲,等.2021.南北构造带北段贺兰山的形成与演化[J].西北大学学报(自然科学版),51(6):951-968.
杜建国,刘丛强.2003.同位素地球化学在地震研究方面的作用[J].地震,23(2):99-107.
杜建国,仵柯田,孙凤霞.2018.地震成因综述[J].地学前缘,25(4):255-267.
杜鹏,柴炽章,廖玉华,等.2009.贺兰山东麓断裂南段套门沟—榆树沟段全新世活动与古地震[J].地震地质,31(2):256-264.
耿侃,杨志荣.1990.贺兰山气候特征与气候地貌[J].烟台师范学院学报(自然科学版),6(2):49-56.
胡进武,王增银,周炼,等.2004.岩溶水锶元素水文地球化学特征[J].中国岩溶,23(1):38-43.
黄锦忠,谭红兵,王若安,等.2015.我国西北地区多年降水的氢氧同位素分布特征研究[J].水文,35(1):33-39,50.
廖玉华,潘祖寿.1982.宁夏红果子沟长城错动新知[J].地震地质,4(2):77-79.
林元武.1993.红河断裂带北段温泉水循环深度与地震活动性的关系探讨[J].地震地质,15(3):193-206.
刘成龙,王广才,史浙明,等.2020.云南硫磺洞温泉水文地球化学特征和成因分析[J].地震研究,43(2):278-286.
吕婕梅,安艳玲,吴起鑫,等.2015.贵州清水江流域丰水期水化学特征及离子来源分析[J].环境科学,36(5):1565-1572.
吕苑苑,郑绵平.2014.盐湖硼、锂、锶、氯同位素地球化学研究进展[J].矿床地质,33(5):930-944.
任光远.2019.基于热储法的银川盆地地热资源评价[J].环境与发展,31(10):30-31.
石宏宇,王万丽,周晓成,等.2021.四川石棉公益海温泉水文地球化学特征[J].地震,41(1):93-115.
宋贯一,易立新,宋晓冰.2000.地下热水对断裂活动与地震活动的影响研究[J].地震学报,22(6):632-636.
王恒纯.1991.同位素水文地质概论[M].北京:地质出版社.
王善博,唐书恒,万毅,等.2013.山西沁水盆地南部太原组煤储层产出水氢氧同位素特征[J].煤炭学报,38(3):448-454.
王云,赵慈平,刘峰,等.2014.小江断裂带及邻近地区温泉地球化学特征与地震活动关系研究[J].地震研究,37(2):228-243.
武向峰,曹志敏,许淑梅,等.2020.贺兰山中南部香山群地球化学特征及构造沉积背景[J].西安石油大学学报(自然科学版),35(2):1-12.
颜玉聪,刘峰立,郭丽爽,等.2021.龙门山断裂带温泉水文地球化学特征[J].地震研究,44(2):170-184.
颜玉聪,周晓成,朱成英,等.2022.2020年新疆伽师MS6.4地震前后伽师地区温泉水文地球化学特征[J].地震研究,45(2):44-56.
于津生.1997.中国同位素地球化学研究[M].北京:科学出版社.
於昊天,马腾,邓娅敏,等.2017.江汉平原东部地区浅层地下水水化学特征[J].地球科学,42(5):685-692.
张春山,张业成,吴满路.2003.南北地震带南段水文地球化学特征及其与地震的关系[J].地质力学学报,9(1):21-30.
张磊,郭丽爽,刘树文,等.2021.四川鲜水河—安宁河断裂带温泉氢氧稳定同位素特征[J].岩石学报,37(2):589-598.
郑淑蕙,张知非,倪葆龄,等.1982.西藏地热水的氢氧稳定同位素研究[J].北京大学学报(自然科学版),(1):99-106.
周晓成,王万丽,李立武,等.2020.金沙江—红河断裂带温泉气体地球化学特征[J].岩石学报,36(7):2197-2214.
周训,曹琴,尹菲,等.2015.四川盆地东部高褶带三叠系地层卤水和温泉的地球化学特征及成因[J].地质学报,89(11):13.
左银辉,邱楠生,邓已寻,等.2013.查干凹陷大地热流[J].地球物理学报,56(9):3038-3050.
Craig H.1961.Isotopic variations in meteoric waters[J].Science,133(3465):1702-1703.
Favara R,Grassa F,Inguaggiato S, et al.2002.Hydrogeochemistry and stable isotopes of thermal springs:earthquake-related chemical changes along Belice Fault(Western Sicily)[J].Applied Geochemistry,16(1):1-17.
Fournier R O,Truesdell A H.1973.An empirical Na-K-Ca geothermometer for natural waters[J].Geochimica et Cosmochimica Acta,37(5):1255-1275.
Fournier R O.1977.Chemical geothermometers and mixing models for geothermal systems[J].Geothermics,5(1-4):41-50.
Gaillardet J,Dupre B,Louvat P, et al.1999.Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J].Chemical Geology,159(1):3-30.
Giggenbach W F.1988.Geothermal solute equilibria.Derivation of Na-K-Mg-Ca geoindicators[J].Geochimica et Cosmochimica Acta,52(12):2749-2765.
Han J,Zhao L Q,Sun X Y, et al.2022.Electrical structures of the Yinchuan Basin and adjacent area,western North China Craton,inferred from magnetotelluric imaging[J].Journal of Asian Earth Sciences,227(2):105089.
Kabata-Pendias A.2010.Trace elements in soils and plants[M].USA:CRC press.
Kingsley S P,Biagi P F,Piccolo R, et al.2001.Hydrogeochemical precursors of strong earthquakes:a realistic possibility in Kamchatka[J].Physics and Chemistry of the Earth Part C Solar Terrestrial & Planetary Science,26(10-12):769-774.
Knapp R B,Knight J E.1977.Differential thermal expansion of pore fluids:fracture propagation and microearthquake production in hot pluton environments[J].Journal of Geophysical Research,82(B17):2515-2522.
Lin A,Hu J,Gong W.2015.Active normal faulting and the seismogenic fault of the 1739 M8.0 Pingluo earthquake in the intracontinental Yinchuan Graben,China[J].Journal of Asian Earth Sciences,114(1):155-173.
Ma X G,Jia W X,Zhu G F, et al.2018.Stable isotope composition of precipitation at different elevations in the monsoon marginal zone[J].Quaternary International,493(10):86-95.
Minvielle S,Lastennet R,Denis A, et al.2015.Characterization of karst systems using SLC-PCO2 method coupled with PCA and frequency distribution analysis.Application to karst systems in the Vaucluse county(Southeastern France)[J].Environmental Earth Sciences,74(12):7593-7604.
Skelton A,Andrén M,Kristmannsdóttir H, et al.2014.Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J].Nature Geoscience,7(10):752-756.
Tokunaga T.1999.Modeling of earthquake-induced hydrological changes and possible permeability enhancement due to the 17 January 1995 Kobe Earthquake,Japan[J].Hydrol,223(3-4):221-229.
Tsunogai U,Wakita H.1995.Precursory chemical changes in ground water:Kobe earthquake,Japan[J].Science,269:61-63.
Verma S P,Santoyo E.1997.New improved equations for Na/K,Na/Li and SiO2 geothermometers by outlier detection and rejection[J].Journal of Volcanology and Geothermal Research,79(1):9-23.
Wei G X,Chen F H,Ma J Z, et al.2014.Groundwater recharge and evolution of water quality in China's Jilantai Basin based on hydrogeochemical and isotopic evidence[J].Environmental Earth Sciences,72(9):3491-3506.
Wei Z,He H,Lei Q, et al.2021.Constraining coseismic earthquake slip using Structure from Motion from fault scarp mapping(East Helanshan Fault,China)[J].Geomorphology,375(2):107552.
Wiersberg T,Erzinger J.2011.Chemical and isotope compositions of drilling mud gas from the San Andreas Fault Observatory at Depth(SAFOD)boreholes:Implications on gas migration and the permeability structure of the San Andreas Fault[J].Chemical Geology,284(1-2):148-159.
Yan Y C,Zhou X C,Liao L X, et al.2022.Hydrogeochemical characteristic of geothermal water and precursory anomalies along the Xianshuihe Fault Zone,Southwestern China[J].Water,14(4):550.
Yang X,Dong Y.2020.Multiple phases of deformation in the Southern Helanshan Tectonic Belt,Northern China[J].Journal of Asian Earth Sciences,201:104497.
Zhang J,Tsujimura M,Song X F,et al.2016.Using stable isotopes and major ions to investigate the interaction between shallow and deep groundwater in Baiyangdian Lake Watershed,North China Plain[J].Hydrological Research Letters,10(2):67-73.
Zhou H L,Zhou X C,Su H J, et al.2022.Hydrochemical characteristics of earthquake-related thermal springs along the Weixi-Qiaohou Fault,Southeast Tibet Plateau[J].Water,14(1):132.
Zhou X C,Li C,Ju X M, et al.2010.Origin of subsurface brines in the Sichuan Basin[J].Groundwater,35(1):53-58.

备注/Memo

备注/Memo:
收稿日期:2022-03-29.
基金项目:宁夏自然科学基金项目(2020AAC03442)、震情跟踪定向工作任务(2022010315)和宁夏地震局地下流体监测与应用研究创新团队(CX2019-2)联合资助.
第一作者简介:王晓涛(1990-),工程师,主要从事地震地下流体及流体地球化学研究. E-mail:232082827@qq.com.
通讯作者简介:丁风和(1977-),高级工程师,主要从事地震地下流体研究.E-mail:dingfenghe@126.com.
更新日期/Last Update: 2023-01-01