|本期目录/Table of Contents|

[1]赵德杨,周晓成,何 苗,等.大凉山断裂带温泉水文地球化学特征[J].地震研究,2023,46(01):26-36.[doi:10.20015/j.cnki.ISSN1000-0666.2023.0003 ]
 ZHAO Deyang,ZHOU Xiaocheng,HE Miao,et al.Hydrogeochemical Characteristics of the Hot Springs in the Daliangshan Fault Zone[J].Journal of Seismological Research,2023,46(01):26-36.[doi:10.20015/j.cnki.ISSN1000-0666.2023.0003 ]
点击复制

大凉山断裂带温泉水文地球化学特征(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
46
期数:
2023年01期
页码:
26-36
栏目:
地震地下流体监测预报理论及技术应用专栏
出版日期:
2023-01-01

文章信息/Info

Title:
Hydrogeochemical Characteristics of the Hot Springs in the Daliangshan Fault Zone
作者:
赵德杨1周晓成2何 苗2天 娇2李静超2董金元2颜玉聪2欧阳澍培2刘峰立2姚炳宇2王昱文2曾召君2陈曲菲3张晓明1杨 耀1罗志鑫2
(1.四川省地震局,四川 成都 610041; 2.中国地震局预测研究所 高压物理与地震科技联合实验室,北京 100036; 3.新疆维吾尔自治区消防救援总队 乌鲁木齐市消防救援支队经济技术开发区大队,新疆 乌鲁木齐 830009)
Author(s):
ZHAO Deyang1ZHOU Xiaocheng2HE Miao2TIAN Jiao2LI Jingchao2DONG Jinyuan2YAN Yucong2OUYANG Shupei2LIU Fengli2YAO Bingyu2WANG Yuwen2ZENG Zhaojun2CHEN Qufei3ZHANG Xiaoming1YANG Yao1LUO Zhixin2
(1.Sichuan Earthquake Agency,Chengdu 610041,Sichuan,China)(2.United Laboratory of High-Pressure Physics and Earthquake Science,Institute of Earthquake Forecasting,China Earthquake Administration,Beijing 100036,China)(3.Economic and Technological Development Zone Brigade,Fire and Rescue Detachment of Urumqi,Fire and Rescue Department of Xinjiang Uygur Autonomous Pegion,Urumqi 830009,Xinjiang,China)
关键词:
大凉山断裂带 温泉 水文地球化学 循环模型
Keywords:
the Daliangshan Fault Zone hot spring hydrogeochemistry circulation model
分类号:
P315.724
DOI:
10.20015/j.cnki.ISSN1000-0666.2023.0003
摘要:
2010—2021年对大凉山断裂带10个温泉开展采样,测定了15个水样中的常量元素和氢氧同位素,进行温泉水文地球化学特征研究,建立了温泉水文地球化学循环模型。研究结果表明:①δD、δ18O的测量值分别为-86.8%~-100.54%和-11.7%~-13.7%,分布于大气降水线附近,表明大凉山断裂带温泉水主要为大气降水补给,其补给高程为2.1~2.5 km; ②温泉水化学类型主要有HCO3-Ca·Mg、SO4·HCO3-Ca·Mg、HCO3-Ca、HCO3-Na·Ca、HCO3-Na和SO4·HCO3-Ca; ③主量元素来自碳酸盐矿物和硅酸盐矿物的水-岩反应; ④Na-K-Mg三角图表明该区温泉水样均为未成熟水; ⑤运用硅-焓模型图解法得到该区热储温度为105.9 ℃~203 ℃,冷水混入比例约为68%~86%,其循环深度为1.9~3.9 km; ⑥循环深度越深,地震活动性越强。
Abstract:
The major elements,trace elements,and stable isotopes of 15 water samples collected from 10 thermal springs in the Daliangshan Fault Zone from 2010 to 2021 are measured to study the hydrogeochemical characteristics,and a model of hydrogeochemical migration of the hot springs in the Daliangshan Fault Zone is built.The results show that:①The values of the stable isotopes(δD and δ18O)are -86.8%—-100.54% and -11.7%—-13.7%,respectively, distributing near the atmospheric precipitation line; this indicates that the hot-spring water are recharged by the meteoric water at the elevations ranging from 2.1 km to 2.5 km.②From the north to the south of the Fault Zone,the chemical types of the hot-spring water are HCO3-Ca·Mg,SO4·HCO3-Ca·Mg,HCO3-Ca,HCO3-Na·Ca,HCO3-Na,and SO4·HCO3-Ca.③The major elements come from the water-rock reaction of carbonate minerals and silicate minerals.④The Na-K-Mg triangle diagram shows that the hot spring samples belong to “immature water”.⑤The silicon-enthalpy model is used and the geothermal reservoir temperature in this area is estimated to be between 105.9 ℃—203 ℃,the mixing ratio of the cold water is 68%—86%,and the circulation depth is 1.9 km—3.9 km.⑥The deeper the circulation of the hot-spring water is,the stronger the seismicity in the area will be.

参考文献/References:

杜建国.2022.中国大陆东部温泉流体来源解析与地震地球化学异常判识方法[J].地震研究,45(2):199-216.
段庆宝,杨晓松,陈建业.2015.地震断层带流体作用的岩石物理和地球化学响应研究综述[J].地球物理学进展,30(6):2448-2462.
冯嘉辉,陈立春,王虎,等.2021.大凉山断裂带北段石棉断裂的古地震[J].地震地质,43(1):53-71.
高伟,何宏林,孙浩越,等.2016.大凉山断裂带中段普雄断裂晚第四纪古地震[J].地震地质,38(4):797-816.
高宗军,于晨,田禹,等.2017.中国大陆大气降水线斜率分区及其水汽来源研究[J].地下水,39(6):149-152.
何宏林,池田安隆,何玉林,等.2008.新生的大凉山断裂带——鲜水河—小江断裂系中段的裁弯取直[J].中国科学:地球科学,48(5):564-574.
胡波.2017.深循环渗入型隐伏温泉地气场及勘查方法研究[D]:成都:成都理工大学,127.
胡亚轩,曾致,李长军,等.2020.西昌地区现今地壳运动及主要断裂活动研究[J].地震,40(1):62-72.
姜光政,高堋,饶松,等.2016.中国大陆地区大地热流数据汇编(第四版)[J].地球物理学报,59(8):2892-2910.
李姜一,周本刚,李铁明,等.2020.安宁河—则木河断裂带和大凉山断裂带孕震深度研究及其地震危险性[J].地球物理学报,63(10):3669-3682.
李录娟.2011.亚洲地热图编制及地热潜力评估[D]:长春:吉林大学,88.
李修成,马致远,张雪莲,等.2016.陕西省关中盆地东大地热田成因机制分析[J].中国地质,43(6):2082-2091.
刘进达,赵迎昌,刘恩凯,等.1997.中国大气降水稳定同位素时—空分布规律探讨[J].勘察科学技术,(3):34-39.
刘雷,杜建国,周晓成,等.2012.青海玉树MS7.1地震震后断层流体地球化学连续观测[J].地球物理学进展,27(3):888-893.
卢丽,陈余道,代俊鸽,等.2021a.四川昭觉竹核温泉水文地球化学特征及成因[J].现代地质,35(3):703-710.
卢丽,王喆,邹胜章,等.2021b.四川昭觉县地热温度解析及成因模式[J].地质通报,40(S1):434-441.
罗敏,任蕊,袁伟.2016.四川地热资源类型、分布及成因模式[J].四川地质学报,36(1):47-50.
潘明,吕勇,郝彦珍,等.2015.云南昌宁玉地里温泉水文地球化学特征及形成模式[J].地球与环境,43(1):98-103.
庞忠和,汪集旸,樊志成.1990.利用SiO2混合模型计算漳州地热田热储温度[J].科学通报,55(1):57-59.
宋方敏,李如成,徐锡伟.2002.四川大凉山断裂带古地震研究初步结果[J].地震地质,24(1):27-34.
汪万红,张慧,苏鹤军.2008.秦岭北缘断裂带温泉水循环深度与地震活动性的关系研究[J].西北地震学报,30(1):36-41.
文龙,巴金,朱兵,等.2018.川滇块体东边界大凉山断裂带中段断层氡气特征及活动性探讨[J].矿物岩石,38(4):56-65.
吴中海,赵根模,刘杰.2016.2015年尼泊尔MS8.1地震构造成因及对青藏高原及邻区未来强震趋势的影响[J].地质学报,90(6):1062-1085.
闫佰忠.2016.长白山玄武岩区地热水资源成因机制研究[D].长春:吉林大学,171.
于津生.1997.中国同位素地球化学研究[M].北京:科学出版社.
张春生.2016.四川省越西地区峨眉山玄武岩地质及地球化学特征研究[D].成都:成都理工大学,57.
张炜斌.2013.京西北盆岭构造区温泉流体地球化学[D].北京:中国地震局地震预测研究所,64.
赵高平.2016.四川盆地南缘大凉山地区构造特征研究[D].成都:成都理工大学,67.
郑文俊,张培震,袁道阳,等.2019.中国大陆活动构造基本特征及其对区域动力过程的控制[J].地质力学学报,25(5):699-721.
周长松,邹胜章,朱丹尼,等.2020.四川昭觉地区优质偏硅酸地下水的特征、成因及其开发利用建议[J].中国地质,43(3):1-11.
周荣军,黎小刚,黄祖智,等.2003.四川大凉山断裂带的晚第四纪平均滑动速率[J].地震研究,30(2):191-196.
周训.2010.地下水科学专论[M].北京:地质出版社.
Craig H.1961.Isotopic variations in meteoric waters[J].Science,133(3465):1702-1703.
Dorsey M T,Rockwell T K,Girty G H, et al.2021.Evidence of hydrothermal fluid circulation driving elemental mass redistribution in an active fault zone[J].Journal of Structural Geology,144(1):104269.
Du G,Wu Q,Zhang X, et al.2019.Pn wave velocity and anisotropy underneath the central segment of the North-South Seismic Belt in China[J].Journal of Asian Earth Sciences,184:103941.
Du J,Liu C,Fu B, et al.2005.Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai Geothermal Field,Southwestern China[J].Journal of Volcanology and Geothermal Research,142(3-4):243-261.
Fairley J P.2009.Modeling fluid flow in a heterogeneous,fault-controlled hydrothermal system[J].Geofluids,9(2):153-166.
Favara R,Grassa F,Inguaggiato S, et al.2001.Hydrogeochemistry and stable isotopes of thermal springs:earthquake-related chemical changes along Belice Fault(Western Sicily)[J].Applied Geochemistry,16(1):1-17.
Fournier R O,Truesdell A H.1974.Geochemical indicators of subsurface temperature.part ii.estimation of temperature and fraction of hot water mixed with cold water[J].Jresusgeolsurv,2(3):263-270
Fournier R O.1977.Chemical geothermometers and mixing models for geothermal systems[J].Geothermics,5(1-4):41-50.
Giggenbach W F.1988.Geothermal solute equilibria.derivation of na-k-mg-ca geoindicators[J].Geochimica Et Cosmochimica Acta,52(12):2749-2765.
Kimura G,Yamaguchi A,Hojo M, et al.2012.Tectonic mélange as fault rock of subduction plate boundary[J].Tectonophysics,568-569:25-38.
Li C,Zhou X,Yan Y, et al.2021.Hydrogeochemical characteristics of hot springs and their short-term seismic precursor anomalies along the Xiaojiang Fault Zone,Southeast Tibet Plateau[J].Water,13(19):2638.
Li D H,Liao H,Ding Z F, et al.2018.Joint inversion of the 3D P wave velocity structure of the crust and upper mantle under the southeastern margin of the Tibetan Plateau using regional earthquake and teleseismic data[J].Acta Geologica Sinica,92(1):16-33.
Li Y,Pang Z,Yang F, et al.2017.Hydrogeochemical characteristics and genesis of the high-temperature geothermal system in the Tashkorgan Basin of the Pamir Syntax,Western China[J].Journal of Asian Earth Sciences,149:134-144.
Martinelli G,Albarello D,Mucciarelli M.1995.Radon emissions from mud volcanoes in Northern Italy:Possible connection with local seismicity[J].Geophysical Research Letters,22(15):1989-1992.
Pang Z,Kong Y,Li J, et al.2017.An Isotopic geoindicator in the hydrological cycle[J].Procedia Earth and Planetary Science,17:534-537.
Quattrocchi F.2000.Geochemical changes at the Bagni Di Triponzo Thermal Spring during the Umbria-Marche 1997-1998 seismic sequence[J].Journal of Seismology,4(4):567-587.
Sibson R H,Robert F,Poulsen K H.1988.High-angle reverse faults,fluid-pressure cycling,and mesothermal gold-quartz deposits[J].Geology(Boulder),16(6):551-555.
Snell T,De Paola N,van Hunen J, et al.2020.Modelling fluid flow in complex natural fault zones:implications for natural and human-induced earthquake nucleation[J].Earth and Planetary Science Letters,530:115869.
Sun H,He H,Ikeda Y, et al.2019.Paleoearthquake history along the southern segment of the Daliangshan Fault Zone in the Southeastern Tibetan Plateau[J].Tectonics,38(7):2208-2231.
Tian J,Pang Z,Guo Q, et al.2018.Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the rekeng high-temperature geothermal system in the Eastern Himalayan Syntax[J].Geothermics,74:92-105.
Wang F,Duan Y,Yang Z, et al.2008a.Velocity structure and active fault of Yanyuan-Mabian Seismic Zone—the result of high-resolution seismic refraction experiment[J].Science in China Series D:Earth Sciences,51(9):1284-1296.
Wang Y,Wang E,Shen Z, et al.2008b.GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan Region,China[J].Science in China Series D:Earth Sciences,51(9):1267-1283.
Zeng X,Lin Y,Chen W, et al.2015.Multiple seismo-anomalies associated with the M6.1 Ludian Earthquake on August 3,2014[J].Journal of Asian Earth Sciences,114:352-361.
Zhang J,Li W,Tang X, et al.2017.Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan[J].Science China Earth Sciences,60(8):1507-1521.
Zhang L,Guo L,Zhou X, et al.2021a.Temporal variations in stable isotopes and synchronous earthquake-related changes in hot springs[J].Journal of Hydrology,599(2):126316.
Zhang M,Guo Z,Xu S, et al.2021b.Linking deeply-sourced volatile emissions to plateau growth dynamics in Southeastern Tibetan Plateau[J].Nature Communications,12(1):4157.
Zhou X,Chen Z,Cui Y.2016.Environmental impact of CO2,Rn,Hg degassing from the rupture zones produced by Wenchuan MS8.0 Earthquake in Western Sichuan,China[J].Environmental Geochemistry and Health,38(5):1067-1082.
Zhou X,Wang W,Chen Z, et al.2015.Hot spring gas geochemistry in Western Sichuan Province,China after the Wenchuan MS8.0 Earthquake[J].Terrestrial,Atmospheric and Oceanic Sciences,26(4):361-373.

备注/Memo

备注/Memo:
收稿日期:2022-06-18.
基金项目:中国地震局地震预测研究所基本科研业务费(CEAIEF20220507,CEAIEF2022030205,CEAIEF20220213,2021IEF0101,2021IEF0201,2021IEF1201)、国家重点研发计划(2017YFC1500501,2019YFC1509203),国家自然科学基金面上项目(41673106,42073063,4193000170)、四川省地震局科技专项(LY2214)和四川省自然科学基金(2022NSFSC0210)联合资助.
第一作者简介:赵德杨(1987-),工程师,主要从事地震地下流体监测与研究.E-mail:oegiin@163.com.
通讯作者简介:周晓成(1978-),研究员,主要从事构造地球化学、流体地球化学研究.E-mail:zhouxiaocheng188@163.com.
更新日期/Last Update: 2023-01-01