[1]付 饶,何 敬,刘 刚.基于改进YOLOv4的2021年海地7.2级地震震后滑坡识别[J].地震研究,2023,46(02):300-307.[doi:10.20015/j.cnki.ISSN1000-0666.2023.0012
]
FU Rao,HE Jing,LIU Gang.Landslide Recognition After the 2021 Haiti MS7.2 Earthquake Based on the Improved YOLOv4 Algorithm[J].Journal of Seismological Research,2023,46(02):300-307.[doi:10.20015/j.cnki.ISSN1000-0666.2023.0012
]
点击复制
基于改进YOLOv4的2021年海地7.2级地震震后滑坡识别(PDF/HTML)
《地震研究》[ISSN:1000-0666/CN:53-1062/P]
- 卷:
-
46
- 期数:
-
2023年02期
- 页码:
-
300-307
- 栏目:
-
- 出版日期:
-
2023-03-10
文章信息/Info
- Title:
-
Landslide Recognition After the 2021 Haiti MS7.2 Earthquake Based on the Improved YOLOv4 Algorithm
- 作者:
-
付 饶1; 何 敬1; 刘 刚1; 2
-
(1.成都理工大学 地球科学学院,四川 成都 610059; 2.成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059)
- Author(s):
-
FU Rao1; HE Jing1; LIU Gang1; 2
-
(1.School of Earth Sciences,Chengdu University of Technology,Chengdu 610059,Sichuan,China)(2.State Key Laboratory of Geological Disaster Prevention and Geological Environment Protection,Chengdu University of Technology,Chengdu 610059,Sichuan,China)
-
- 关键词:
-
YOLOv4; 海地地震; 滑坡识别; 高分影像
- Keywords:
-
the YOLOv4 algorithm; the Haiti Earthquake; landslide identification; high resolution image
- 分类号:
-
P642.22
- DOI:
-
10.20015/j.cnki.ISSN1000-0666.2023.0012
- 摘要:
-
以国产高分二号影像为数据源,利用改进的YOLOv4算法对2021年海地7.2级地震诱发的滑坡进行识别。为提升模型的识别效率,用MobileNetv3替换了YOLOv4的骨干网络CSPDarknet53,并用深度可分离卷积替代YOLOv4中的普通卷积,优化了模型参数和网络结构。结果表明:改进后的YOLOv4算法目标识别精度达到91.37%,比普通YOLOv4检测速度提高了6.19 f/s,精度提高了5.24%,模型参数大小减少了80%。改进后的方法对滑坡的检测精度高于原YOLOv4算法,得到的滑坡位置更为准确,具有轻量化和实时性更高的优势,可为应急救援和灾情评估提供更加可靠的数据。
- Abstract:
-
Rapid identification of seismic landslides is important for emergency rescue and loss assessment.On August 14th,2021,a 7.2-magnitude earthquake occurred in Haiti,inducing a large number of landslides.In this paper,the improved YOLOv4 algorithm is used to identify the landslides induced by the Haiti MS7.2 Earthquake using the domestically produced high-fraction 2 images as the data source.To improve the recognition efficiency of the model,the backbone network CSPDarknet53 of Yolov4 is replaced with MobileNetv3,and the ordinary convolution in the YOLOv4 is replaced with depth-separable convolution to optimize the model parameters and network structure.The improved YOLOv4 algorithm achieves 91.37% of the accuracy of target recognition,6.19 f/s(5.24%)higher than the detection speed of the normal YOLOv4,providing more reliable data for emergency rescue and disaster assessment.
备注/Memo
- 备注/Memo:
-
收稿日期:2022-04-29.
基金项目:国家重点研发计划课题(2021YFC3000401); 国家自然科学基金项目(41871303); 地质灾害防治与地质环境保护国家重点实验室项目(SKLGP2018Z010); 四川省科技计划项目(2021YFG0365); 四川省自然资源厅(kj-2021-3); 成都市技术创新研发项目(2022-YF05-01090-SN); 成都理工大学研究生质量工程项目(2022YJG022).
第一作者简介:付 饶(2000-),硕士研究生在读,主要从事遥感图像处理、目标识别方面研究.E-mail:2276220889@qq.com.
通讯作者简介:何 敬(1983-),博士,副教授,主要从事无人机影像处理、倾斜三维建模及遥感目标自动识别等方面研究.E-mail:xiao00yao@163.com.
更新日期/Last Update:
2023-03-10