|本期目录/Table of Contents|

[1]颜玉聪,刘峰立,郭丽爽,等.龙门山断裂带温泉水文地球化学特征[J].地震研究,2021,44(02):170-184.
 YAN Yucong,LIU Fengli,GUO Lishuang,et al.Hydrogeochemical Characteristics of the Hot Springs in the Longmenshan Fault Zone[J].Journal of Seismological Research,2021,44(02):170-184.
点击复制

龙门山断裂带温泉水文地球化学特征(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
44
期数:
2021年02期
页码:
170-184
栏目:
出版日期:
2021-06-30

文章信息/Info

Title:
Hydrogeochemical Characteristics of the Hot Springs in the Longmenshan Fault Zone
作者:
颜玉聪1刘峰立1郭丽爽2周晓成1欧阳澍培1李静超1王万丽1
(1.中国地震局地震预测研究所,北京100036; 2.应急管理部国家自然灾害防治研究院中国地震局地壳动力学重点实验室,北京100085)
Author(s):
YAN Yucong1LIU Fengli1GUO Lishuang2ZHOU Xiaocheng1OUYANG Shupei1LI Jingchao1WANG Wanli1
(1.Institute of Earthquake Forecasting,China Earthquake Administration,Beijing 100036,China)(2.National Institute of Natural Hazards,Ministry of Emergency Management,Key Laboratory of Crustal Dynamics,China Earthquake Administration,Beijing 100085,China)
关键词:
温泉 水文地球化学 地震 龙门山断裂带
Keywords:
hot spring hydrogeochemistry earthquake the Longmenshan Fault Zone
分类号:
P314.1
DOI:
-
摘要:
对地震活动强烈地区进行水文地球化学监测可以很好地获取与地震相关的深部流体地球化学信息。通过研究龙门山断裂带及其周围13个温泉及观测井的水文地球化学特征,建立该断裂带温泉水文循环模型,揭示其水化学变化与地震活动的关系。结果表明:①龙门山断裂带温泉水主要来自其周围0.8~3.2 km高山的大气降水; ②温泉水化学类型沿龙门山断裂从北到南、从西到东依次为重碳酸型、硫酸型、氯化物型,温泉水的循环深度、水岩反应程度及微量元素富集因子不断增加; ③在汶川MS8.0地震、芦山MS7.0地震发生后,震中距200 km以内的温泉的离子组分呈下降趋势,这可能是在震后愈合过程中,龙门山断裂内部渗透性减弱、水岩反应程度衰减所致。
Abstract:
Hydrogeochemical Monitoring in the regions with strong earthquake activities would facilitate the obtaining of the geochemical information about deep fluids correlated to seismic anomalies.In this paper the hydrogeochemical characteristics of 13 hot springs(wells)in the Longmenshan Fault Zone were investigated,so as to establish the hydrogeochemical cycle model of the hot springs and reveal the relationship between hydrogeochemical variations and seismic activity in the Fault Zone.The results show that:①The hot springs in the Longmenshan Fault Zone were recharged by the meteoric water at elevations ranging from 0.8 to 3.2 km.②The chemical types of the hot springs from north to south,and from west to east along the Longmenshan Fault Zone were respectively carbonic acid,sulfuric acid and chloride.Likewise,the circulation depth of spring water deepened; the water-rock reaction intensified; and enrichment factors of the trace element of the hot springs continuously increased.③After the Wenchuan MS8.0 earthquake and the Lushan MS7.0 earthquake,the dissolved hydrochemical composition got declining in hot springs within the epicenter of 200 kilometers,which could be the result of the permeability decrease and the attenuation of water-rock reaction inside the fault in the healing process of the Longmenshan Fault after earthquake,

参考文献/References:

曹琴,周训,张欢,等.2015.四川盆地卧龙河储卤构造地下卤水的水化学特征及成因[J].地质通报,34(5):990-997.
陈志.2014.汶川地震后川西地区温泉水地球化学研究[D].合肥:中国科学技术大学.
程万正,官致君,李军.2013.对汶川8.0级地震前四川地区地下流体观测异常的研究[J].四川地震,(2):1-8.
崔希林.2014.四川盆地中西部温泉成因模式研究[D].成都:成都理工大学.
邓起东,陈社发,赵小麟.1994.龙门山及其邻区的构造和地震活动及动力学[J].地震地质,16(4):389-403.
付碧宏,时丕龙,张之武.2008.四川汶川MS8.0大地震地表破裂带的遥感影像解析[J].地质学报,82(12):1679-1687.
柯斌.2014.四川茂县吉鱼温泉成因模式及开发远景分析[D].成都:成都理工大学.
李奋生,赵国华,李勇,等.2015.龙门山地区水系发育特征及其对青藏高原东缘隆升的指示[J].地质论评,61(2):345-355.
李生红.2013.川东褶皱带中、下三叠统水文地质特征研究[D].成都:成都理工大学.
林耀庭,唐庆,熊淑君,等.1997.四川盆地卤水的氢、氧同位素地球化学特征及其成因分类研究[J].地质地球化学,(4):20-26.
林耀庭.2001.四川盆地三叠纪卤水成藏条件[J].化工矿产地质,23(1):19-24.
刘成龙,王广才,史浙明,等.2020.云南硫磺洞温泉水文地球化学特征和成因分析[J].地震研究,43(2):278-286.
庞忠和,汪集旸,樊志成.1990.利用SiO2混合模型计算漳州地热田热储温度[J].科学通报,(1):57-59.
蒲小武,武银,狄国荣,等.2013.甘肃清水温泉井与临夏井水温在汶川地震前后的异常变化特征[J].地震研究,36(3):269-274.
宋娟,周永胜.2013.断层带流体对断层强度和强震孕育的影响[J].国际地震动态,420(12):5-16.
陶广斌.2019.川西淡矿化温泉地球化学特征及成因研究[D].成都:成都理工大学.
王二七,孟庆任,陈智樑,等.2001.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘,8(2):165-174.
王逸凌,穆文清,史浙明.2020.鲜水河断裂南段温泉水文地球化学特征[J].地震研究,43(2):287-295.
王云,赵慈平,刘峰,等.2014.小江断裂带及邻近地区温泉地球化学特征与地震活动关系研究[J].地震研究,37(2):228-243.
王志,赵琳娜,张国平,等.2010.汶川地震灾区堰塞湖流域面雨量计算方法研究[J].气象,36(6):7-12.
徐锡伟,闻学泽,叶建青,等.2008.汶川MS8.0地震地表破裂带及其发震构造[J].地震地质,30(3):597-629.
薛钧月.2009.龙门山构造带中—北段构造流体地球化学特征及其与成藏关系的探讨[D].成都:成都理工大学.
晏锐,官致君,刘耀炜.2015.川西温泉水温观测及其在芦山MS7.0地震前的异常现象[J].地震学报,37(2):347-356.
杨耀,周晓成,官致君,等.2019.川西地下流体观测井水文地球化学特征[J].矿物岩石地球化学通报,38(5):966-976.
于津生.1997.中国同位素地球化学研究[M].北京:科学出版社.
张岳桥,杨农,施炜,等.2008.青藏高原东缘新构造及其对汶川地震的控制作用[J].地质学报,82(12):1668-1678.
周晓成,王万丽,李立武,等.2020.金沙江—红河断裂带温泉气体地球化学特征[J].岩石学报,36(7):2197-2214.
周训,曹琴,尹菲,等.2015.四川盆地东部高褶带三叠系地层卤水和温泉的地球化学特征及成因[J].地质学报,89(11):1908-1920.
周训.1993.四川盆地龙女寺储卤构造深层地下卤水的水文地球化学特征及成因[J].现代地质,7(1):83-92.
周永胜,何昌荣,杨晓松.2008.中地壳韧性剪切带中的水与变形机制[J].中国科学:地球科学,38(7):819-832.
Benavente O,Tassi F,Reich M,et al.2016.Chemical and isotopic features of cold and thermal fluids discharged in the Southern Volcanic Zone between 32.5°S and 36°S:Insights into the physical and chemical processes controlling fluid geochemistry in geothermal systems of Central Chile[J].Chemical Geology,420(1):97-113.
Chen Z,Zhou X C,Du J G,et al.2015.Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan MS= 7.0 earthquake in Sichuan,China[J].Natural Hazards & Earth System Ences Discussions,2(6):1149-1156.
Clark M K,Royden L H.2000.Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J].Geology,28(8):703-706.
Craig H.1961.Isotopic Variations in Meteoric Waters[J].Science,133(3465):1702-1703.
Fournier R O,Rowe J J.1966.The deposition of silica in hot springs[J].29(1):585-587.
Giggenbach W F.1988.Geothermal solute equilibria.Derivation of Na-K-Mg-Ca geoindicators[J].Geochimica Et Cosmochimica Acta,52(12):2749-2765.
Godard V,Pik R,Cattin R,et al.2009.Late Cenozoic evolution of the central Longmen Shan,eastern Tibet:Insight from(U-Th)/He thermochronometry[J].Tectonics,28(5):TC5009.
Kouketsu Y,Shimizu I,Wang Y,et al.2017.Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt,China; comparisons with those of sedimentary and metamorphic rocks[J].Tectonophysics,699(1):129-145.
Lambrakis N,Kallergis G.2005.Contribution to the study of Greek thermal springs:hydrogeological and hydrochemical characteristics and origin of thermal waters[J].Hydrogeology Journal,13(3):506-521.
Lin X,Dreger D,Ge H,et al.2018.Spatial and Temporal Variations in the Moment Tensor Solutions of the 2008 Wenchuan Earthquake Aftershocks and Their Tectonic Implications[J].Tectonics,37(3):989-1005.
Liu Y,Ren H,Wang B.2009.Application of environmental isotopes and tracer techniques to seismic subsurface fluids[J].Earth Science Frontiers,16(1):369-377.
Luo J,Pang Z H,Kong Y K,et al.2017.Geothermal potential evaluation and development prioritization based on geochemistry of geothermal waters from Kangding area,western Sichuan,China[J].Environmental Earth Ences,76(9):343.
Mokadem N,Demdoum A,Hamed Y,et al.2016.Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system:Northern Gafsa basin- Central Tunisia[J].Journal of African Earthences,114(1):174-191.
Pérez N M,Hernández P A,Igarashi G,et al.2008.Searching and detecting earthquake geochemical precursors in CO2-rich groundwaters from Galicia,Spain[J].Geochemical Journal,42(1):75-83.
Okuyama Y,Funatsu T,Fujii T,et al.2016.Mid-crustal fluid related to the Matsushiro earthquake swarm(1965-1967)in northern Central Japan:geochemical reproduction,Tectonophysics,679(3):61-72.
Shi Z,Zhang H,Wang G.2020.Groundwater trace elements change induced by MS5.0 earthquake in Yunnan[J].Journal of Hydrology,581:124424.
Skelton A,Andren M,Kristmannsdottir H,et al.2014.Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J].Nature Geoscience,7(10):752-756.
Soto-Jiménez M F,Páez-Osuna F.2001.Distribution and Normalization of Heavy Metal Concentrations in Mangrove and Lagoonal Sediments from Mazatlán Harbor(SE Gulf of California)[J].Estuarine Coastal & Shelf Ence,53(3):259-274.
Tsunogai U,Wakita H.1995.Precursory Chemical Changes in Ground Water:Kobe Earthquake,Japan[J].Science,5220(269):61-63.
Walraevens K,Bakundukize C,Mtoni Y E,et al.2018.Understanding the hydrogeochemical evolution of groundwater in Precambrian basement aquifers:A case study of Bugesera region in Burundi[J].Journal of Geochemical Exploration,188(3):24-42.
Xu Q,Hoke G D,Jing L Z,et al.2015.Stable isotopes of surface water across the Longmenshan margin of the eastern Tibetan Plateau[J].Geochemistry Geophysics Geosystems,15(8):3416-3429.
Xu Z,Zhen F,Li SX,et al.2019.The 2018 MS5.9 Mojiang Earthquake:Source model and intensity based on near-field seismic recordings[J].Earth and Planetary Physics,3(3):88-101.
Zhang Y F,Tan H B,Zhang W J,et al.2015.A New Geochemical Perspective on Hydrochemical Evolution of The Tibetan Geothermal System[J].Geochemistry International,53(12):1090-1106.
Zhang Y F,Tan H B,Zhang W J,et al.2016.Geochemical constraint on origin and evolution of solutes in geothermal springs in western Yunnan,China[J].Chemie der Erde-Geochemistry,76(1):63-75.
Zhou X,Jiang C,Zhao J,et al.2015.Occurrence and resource evaluation of the subsurface high-K brines in the Pingluoba brine-bearing structure in western Sichuan Basin[J].Environmental Earth Sciences,73(12):8565-8574.
Zhou X C,Li C,Ju X M,et al.2010.Origin of Subsurface Brines in the Sichuan Basin[J].Groundwater,35(1):53-58.
Zhou X C,Liu L,Chen Z,et al.2017.Gas geochemistry of the hot spring in the Litang fault zone,Southeast Tibetan Plateau[J].Applied Geochemistry,79(1):17-26.

备注/Memo

备注/Memo:
收稿日期:2021-01-11
基金项目:国家重点研发计划(2017YFC1500501)、国家自然科学基金面上项目(41673106)和中国地震局地震预测研究所基本科研业务费(2017IES010205,2016IES010304,2018IEF010104,2020IEF0604,2020IEF0703)联合资助.
更新日期/Last Update: 2021-06-30