|本期目录/Table of Contents|

[1]沈惠军,王 浩,郑文智,等.多维地震作用下高铁桥梁圆端形桥墩易损性分析[J].地震研究,2021,(02):225-232.
 SHEN Huijun,WANG Hao,ZHENG Wenzhi,et al.Fragility Analysis of the Round-ended Pier of High-speed Railway Bridges Subjected to Multi-dimensional Ground Motions[J].Journal of Seismological Research,2021,(02):225-232.
点击复制

多维地震作用下高铁桥梁圆端形桥墩易损性分析(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
期数:
2021年02期
页码:
225-232
栏目:
出版日期:
2021-06-30

文章信息/Info

Title:
Fragility Analysis of the Round-ended Pier of High-speed Railway Bridges Subjected to Multi-dimensional Ground Motions
作者:
沈惠军123王 浩1郑文智1梁瑞军1沙 奔1许俊红4
(1.东南大学混凝土及预应力混凝土结构教育部重点实验室,江苏 南京 210096; 2.中交第二航务工程局有限公司,湖北 武汉 430040; 3.长大桥梁建设施工技术交通行业重点实验室,湖北 武汉 430040; 4.南京林业大学 土木工程学院,江苏 南京 210037)
Author(s):
SHEN Huijun123WANG Hao1ZHENG Wenzhi1LIANG Ruijun1SHA Ben1XU Junhong4
(1.Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education,Southeast University,Nanjing 210096,Jiangsu,China)(2.Second Harbour Engineering Co.[KG-*3],Ltd.,China Communications Construction Company Ltd.[KG-*3],Wuhan 430040,H
关键词:
高铁桥梁 圆端形桥墩 地震易损性 多维地震动 相对位移延性比 地震动输入角
Keywords:
high-speed railway bridge round-ended pier seismic fragility multi-dimensional ground motions relative displacement ductility ratio input angle of the ground motion
分类号:
U442.5+5
DOI:
-
摘要:
圆端形桥墩在高铁桥梁中应用广泛,为研究其在多维地震动作用下的易损性,首先基于OpenSees建立了某典型三跨高铁连续梁桥的非线性动力分析模型; 然后以相对位移延性比为桥墩的损伤指标,确定了固定中墩各破坏状态的相对位移延性比界限值; 最后,在考虑地震动输入角的基础上,基于易损性分析方法,对比分析了固定中墩顺桥向和横桥向的地震响应。结果表明:①同一地震动输入角下,固定中墩顺桥向的墩顶峰值位移平均值远大于横桥向; ②当PGA值和地震动输入角都相同时,固定中墩顺桥向达到各破坏状态的概率明显大于横桥向,因此,在设计时应优先考虑顺桥向的破坏概率; ③固定中墩顺桥向各破坏状态易损性云图的波动性明显大于横桥向,所以地震动输入角对固定中墩顺桥向的影响不容忽视。
Abstract:
The round-ended pier is widely used for high-speed railway bridges.In order to study its fragility subjected to multi-dimensional ground motions,the finite element model of a typical three-span,continuous girder bridge of the high-speed railway is performed based on OpenSees.Then,the relative displacement ductility ratio of the pier is defined as the damage index,and its limit values for the damage state of each fixed pier are determined.Finally,in the case of different angles of input ground motions,seismic responses of the fixed middle pier along the longitudinal and the transverse directions are compared based on the vulnerability analysis method.Results show that:① The average peak displacement the fixed middle pier along the longitudinal direction is much larger than that along of the transverse direction on condition of the same input angle; ② On condition of the same PGA and input angle,the failure probability of the fixed middle pier along the longitudinal direction is significantly higher than that along the transverse direction.Therefore,the failure probability along the longitudinal direction should be given priority in pier designing; ③ The fluctuation of the contour plots for the fragility of the fixed middle pier along the longitudinal direction in different damage states is obviously higher than that along the transverse direction.Hence the effect of the input angle of the ground motion on the fixed middle pier should be a matter of concern.

参考文献/References:

陈惠发,段炼.2008.桥梁工程抗震设计[M].北京:机械工业出版社.
陈令坤,蒋丽忠,王丽萍,等.2011.圆端型墩高速铁路桥梁的弹塑性地震反应分析[J].华南理工大学学报(自然科学版),39(6):130-135.
陈伟,王冠,杜彦良,等.2020.高速铁路连续梁桥近断层地震易损性分析[J].哈尔滨工程大学学报,41(2):212-218.
侯爽,郭安薪,李惠,等.2007.城市典型建筑的地震损失预测方法Ⅰ:结构易损性分析[J].地震工程与工程振动,(6):64-69.
Howard H,刘晶波.2004.地震作用下钢筋混凝土桥梁结构易损性分析[J].土木工程学报,(6):47-51.
鞠彦忠,阎贵平,刘林.2003.低配筋大比例尺圆端型桥墩抗震性能的试验研究[J].土木工程学报,36(11):65-69.
李秉南,戴航,张继文.2014.高速铁路HRBF500钢筋混凝土圆端形桥墩抗震性能试验研究[J].东南大学学报(自然科学版),44(4):832-837.
沈惠军,王浩,郑文智,等.2019.基于易损性方法的高铁连续梁桥地震动最不利输入方向分析[J].东南大学学报(自然科学版),49(5):926-932.
孙卓,李建中,闫贵平,等.2006.钢筋混凝土单柱式桥墩抗震性能试验研究[J].同济大学学报(自然科学版),34(2):160-164.
徐勇,金福海,杨福泰,等.2010.武广铁路客运专线四院范围桥梁总体设计[J].铁道标准设计,(1):94-99.
郑健.2008.中国高速铁路桥梁[M].北京:高等教育出版社.
Cornell C A,Jalayer F,Hamburger R O,et al.2002.Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J].Journal of Structural Engineering-ASCE,128(4):526-533.
HAZUS.1997.Earthquake loss estimation methodlolgy[R].Technical Manual,Washington DC:National Institute of Building for the Federal Emergency Management Agency.
Howard H,Liu J B,Chiu Y H.2011.Seismic fragility analysis of highway bridges[R].Mid-America Earthquake Center Technical Report,MAEC-RR-4 Project.
Mackie K R,Cronin K J,Nielson B G.2011.Response sensitivity of highway bridges to randomly oriented multi-component earthquake excitation[J].Journal of Earthquake Engineering,15(6):850-876.
Mackie K R,Stojadinovic B.2005.Fragility basis for California highway overpass bridge seismic decision making[R].Berkeley:Pacific Earthquake Engineering Research Center,College of Engineering,University of California.
Padgett J E,Nielson B G,Desroches R.2010.Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J].Earthquake Engineering and Structural Dynamics,37(5):711-725.
Taskari O,Sextos A.2015.Multi-angle,multi-damage fragility curves for seismic assessment of bridges[J].Earthquake Engineering and Structural Dynamics,44(13):2281-2301.
Wang H,Zheng W Z,Li J,et al.2019.Effects of temperature and lead core heating on response of seismically isolated bridges under near-fault excitations[J].Advances in Structural Engineering,22(14):2966-2981.
Wei B,Yang T,Jiang L,et al.2018.Effects of uncertain characteristic periods of ground motions on seismic vulnerabilities of a continuous track-bridge system of high-speed railway[J].Bulletin of Earthquake Engineering,16(1):1-31.
Zheng W Z,Wang H,Li J,et al.2019a.Performance evaluation of bridges isolated with SMA-based friction pendulum system at low temperatures[J].Soil Dynamics and Earthquake Engineering,125:105734.
Zheng W Z,Wang H,Li J,et al.2019b.Parametric study of SMA-based FPB system for response control of bridges under near-fault ground motions[J].Journal of Earthquake Engineering,25(8):1494-1512.
Zheng W Z,Wang H,Li J,et al.2020.Parametric study of superelastic sliding LRB system for seismic response control of continuous bridges[J].ASCE Journal of Bridge Engineering,25(8):04020062.
JTG/TB 02-01-2008,公路桥梁抗震设计细则[S].

备注/Memo

备注/Memo:
收稿日期:2020-03-24
基金项目:国家自然科学基金项目(51578151)、国家“万人计划”青年拔尖人才(W03070080)、江苏省重点研发计划项目(BE2018120)、江苏省自然科学基金(BK20180776)、江苏省高校自然科学基金(18KJB560013)和住房和城乡建设厅科学技术项目(2018-K9-068)联合资助.
更新日期/Last Update: 2021-06-30