基金项目:中央级公益性科研院所基本科研业务专项(ZDJ2013-05)和(ZDJ2010-20)联合资助.
(中国地震局地壳应力研究所,北京 100085)
(Institute of Crustal Dynamics,CEA,Beijing 100085,China)
b-value; V4; least-squares method; seismic risk analysis; Tan-Lu seismic zone
备注
基金项目:中央级公益性科研院所基本科研业务专项(ZDJ2013-05)和(ZDJ2010-20)联合资助.
以郯庐地震带为研究实例,基于线性最小二乘法回归原理,采用多种组合方案统计得到多个b值与V4组合,选取最佳组合方案,确定郯庐地震带最优b值和V4值; 同时使用概率地震危险性分析方法计算每个组合方案不同超越概率水平下的基岩水平峰值加速度,探讨了地震活动性参数b值和V4的不确定性对地震危险性分析结果的影响程度和规律。本研究方法和结论可供地震活动性分析和地震危险性评价研究时参考,对地震区划和工程场地地震安全性评价均有重要意义。
Taking Tan-Lu seismic zone as an example,basing on linear least-squares regression theory,we selected the best combination scheme of b-value and V4 in Tan-Lu seismic region from various combination scheme statistics of b-value and V4. In addition,we calculated bedrock horizontal peak acceleration of each combination scheme under different probability of exceedance by probability seismic hazard analysis method,and discussed the influence degree and law of uncertainty of seismic activity parameter b-value and V4 on seismic risk analyze result. The statistical analysis of b-value and V4 and its uncertainty could be used as the reference of seismic activity and risk evaluation researches and had important significance for seismic zoning,and seismic safety assessment of engineering site.
引言
b值和V4作为概率危险性计算中的两个重要参数,其统计分析是确定地震统计区地震活动性参数的重要环节(胡聿贤,1999)。受地震资料完整性、统计时段、样本处理方法等因素的影响,b值和V4的统计结果存在较大的不确定性,直接影响到场点的地震危险性分析结果。笔者以郯庐地震带为研究实例,分时段统计各震级档的累积年平均发生率,基于线性最小二乘法回归原理,采用多种组合方案统计得到多个b值与V4的组合,并以概率地震危险性分析方法计算每个组合方案不同超越概率水平下的基岩水平峰值加速度,通过研究,笔者选取了郯庐地震带b值与V4的最佳统计方案,确定最优b值和V4值,为概率危险性分析提供计算参数,同时,还探讨了地震活动性参数b值和V4的不确定性对地震危险性分析结果的影响程度和规律。
1 统计方法和原理
b值为震级—频度关系式中的斜率,它代表着一个区域内不同大小地震频度的比例关系,V4为4级以上地震的年平均发生率,反映一个区域内的地震活动水平。b值是通过实际资料统计得到的,它与实际资料的完整性、可靠性、统计样本量的大小有关。历史地震可利用的震级范围有限(一般为5≤MS≤8),所以使用历史地震资料求解的b值结果往往偏低; 而现代地震资料因其记录时间太短,所求解的b值不能正确反映一个地区地震活动特征(黄玮琼等,1989)。因此,可以使用历史强震资料和现代小震联合求b值,以弥补地震资料样本量的不足(鄢家全等,1996; 潘华,李金臣,2006),其具体原理为震级—频度关系式
lgNi=a-bmi, i=1,2,3,……,n.(1)
式中,a,b为回归系数,按间隔Δm将最小震级mmin以上震级划分成n档,mi取mmin+(i-1)×Δm≤m<mmin+i×Δm震级区间的下限值,令yi=lgNi,由实际地震资料,可以得到n对观测值(m1,y1),(m2,y2), …,(mn,yn)。假定震级mi在时段Ti上基本完整,其年平均发生率为Vi,则有
y'i=lg(∑ni=kvi)=lg(∑ni=k(Ni)/T)=lg(1/TNi)
=yi-lgT.(2)
由此可以得到n对值(m1,y'1),(m2,y'2), …,(mn,y'n),综合式(1)和式(2)可得到
y'+lgT= a-bmi =>y'=a'-bmi,(3)
a'=a-lgT.
对比式(1)、(3)可以看出,N(m)-M 关系中的b值和转换为累积年平均发生率V(m)-M 关系中的b值一致,因此,可以使用历史地震资料和记录较为完备的现代小震资料,转换为累积年平均发生率的方法统计b值。本文采用此方法并基于线性最小二乘回归原理进行拟合,最终求得地震统计区的b值和V4。
2 b值和V4的统计
2.1 资料预处理收集郯庐地震带历史强震目录(国家地震局震害防御司,1995; 中国地震局震害防御司,1999; 中国地震局地壳应力研究所,2009)和1970年以来的现代中小地震目录(小震资料来自中国地震台网中心的地震数据库),根据余震的空间窗半径公式lgR=0.48M-1.57(陈凌等,1998)和时间窗表(Console等,1979),确定余震的空间和时间范围,对所收集到的地震目录进行余震删除; 并基于G-R关系的震级—频度分布原理,对研究区的小震资料进行完整性分析(苏有锦等,2003; 王琼等,2011),选取ML在最小完整震级MC至5.0级范围内的中小震,利用华北平原地区MS=1.0112ML-0.2591公式(谢卓娟,2009)将ML转换为MS震级。
通过以上资料预处理,最终给出了郯庐地震带自公元前 70年以来地震4 174次,其中,8级以上地震1次、7.0~7.9级地震6次、6.0~6.9级地震16次、5.0~5.9级地震64次、4.7~4.9级地震38次、4.0~5.0级地震53次、3.0~3.9级地震527次、2.0~2.9级地震3 469次。
2.2 各时段地震累积年平均发生率分析郯庐地震带地震活动的时间分布特征,以此作为划分累积年平均发生率时段的依据。图1分别给出了该带公元前70年和1400年以来M≥43/4地震的M-T图,从图1a中可以看出,1400年之前仅记有11次地震,地震缺失较多,1400年后地震记录基本完整,1500年以后5级以上地震基本完整(任雪梅,2011); 从图1b中可看出,1400年以来该地震带经历有两个地震活跃期,分别为1477~1687年和1829年至今,郯庐地震带的第一活跃期发生了1668年郯城81/2级特大地震,第二活跃期尚未结束。
根据郯庐地震带的时间分布特征,分4个统计时段:1477~2011年、1500~2011年、1829~2011年和1970~2011年,分别统计出这4个时段各震级档的地震累积年平均发生率,统计结果如表1所示。
2.3 多种组合统计方案根据郯庐地震带地震样本完备时段、活动期划分、不同震级段等因素,形成多种统计方案,得到多个b值与V4的组合,每个组合表现出了不同的地震活动特征。统计方案与结果列于表2,表2中“Δ”表示标准离差,R表示拟合的相关系数,SD是回归标准差。本节统计b值时采用0.5作为地震统计间隔(黄玮琼等,1989; 雷建成等,2010)。
图1 公元前70年(a)、公元1400年以来(b)
郯庐地震带的M-T图
Fig.1 The M-T map of the Tan-Lu seismic zone since 700 BC(a)and 1400(b)表2中各统计方案的拟合相关系数R均达到0.984以上,按照10号方案进行拟合的相关系数最高,R为0.998,R→1,表明按照10号方案进行拟合的效果最佳,线性关系最好,回归标准差SD=0.090,也为方案中的最低值,数据可靠性高。按照10号方案进行拟合得到的b=0.853,拟合结果如图2a所示。
表2 郯庐地震带b值和V4多方案统计结果
Tab.2 Statistical results schemes of b-value and V4 in Tan-Lu seismic zone图2 郯庐地震带震级—频度关系图(a)、地震发生次数泊松分布拟合图(b)
Fig.2 Magnitude-frequency relationship of Tan-Lu seismic zone(a)and poisson distribution fitting curve of the number of earthquake(b)根据郯庐地震带的b值和V4统计结果,并基于不低估已有的地震危险性,同时对未来地震危险性给予合理保守考虑的原则①,最终确定郯庐地震带b=0.856,V4=2.822。
3 b值和V4的不确定性对危险性分析结果的影响
3.1 基岩水平峰值加速度将不同b值与V4的组合作为概率危险性分析中的计算参数,以相同的潜在震源区划分方案、空间分布函数和地震动衰减模型(GB18306-2001; 卢寿德,2005),采用考虑地震活动时空不均匀特性的概率危险性分析方法(CPSHA),计算统计区内不同超越概率水平下的地震加速度峰值。随机选取点(35.446°N,119.290°E),表3给出该点在不同b值与V4组合计算得到的50 a超越概率分别为63%、10%、2%和100年超越概率分别为63%、10%、3%的地震基岩水平峰值加速度。
根据表3,以最优b值和V4计算得到的基岩水平峰值加速度值为参照标准,计算各方案的基岩水平峰值加速度值与参照值的差值,将各概率基岩水平峰值加速度差值绘制成图3。结合表3、图3可看出:① 使用不同的b值与V4组合计算得到的不同超越概率水平下的基岩水平峰值加速度值有明显差异,但其变化具有一定的规律性; ② 不同的b值与V4组合的变化对高超越概率水平的影响均大于对低超越概率水平的影响,如图3所示,各方案中50 a超越概率为2%、100 a超越概率为3%的基岩水平峰值加速度差值均大于低概率的
图3 各概率基岩水平峰值加速度差值图
Fig.3 Difference of the basement rock horizontal peak acceleration in different risk probability表3 不同b值与V4组合对应的不同超越概率水平下的基岩水平峰值加速度
Tab.3 The variety combination schemes of b-value and V4 corresponding to the different exceeding probabilities of the horizontal peak acceleration on the basement rock50 a超越概率为63%、100a超越概率为63%; 表3显示了18种方案计算结果的极差,可看出,极差也随着超越概率水平的增加而增加,变化范围在15.9~52.6 Gal之间; ③ b值拟合时,相关系数高,线性关系好的拟合方案计算得到的各概率基岩水平峰值加速度差值较小,如:9、10、11等方案,相反,拟合线性关系差的方案计算得到的各概率基岩水平峰值加速度差值大,变化幅度大,如3、4、6方案。
综上所述,b值和V4的不确定性影响到地震危险性分析的结果,特别是对高超越概率的影响不可忽略,在b值和V4统计时,应根据地震统计区样本资料的完整性,选取合适的统计时段、采用合适的样本处理方法联合确定统计方案。
3.2 敏感性分析为了进一步研究b值和V4对地震危险性分析结果的影响程度,判断较为敏感的参数,我们分别计算该场点在V4一定(V4=2.822)、b值变化和b值一定(b=0.853)、V4值变化两种情况下的各概率基岩水平加速度峰值,计算结果如表4所示,图4为其基岩水平峰值加速度超越概率曲线图(超越概率分别为10 a、50 a)。
结合表4和图4可看出:① V4一定时,地震危险性分析的结果随b值的增加而减小,b值一定时,地震危险性分析的结果随V4的增加而增加; 说明b值越大,危险性程度越小,V4越大,危险性程度越大,计算结果合理。② 图4中显示,超越概率曲线的形状基本一致,变化规律一致,但高超越概率段的曲线比较离散,低超越概率段曲线较为集中,这说明地震活动性参数的变化对高超越概率水平的影响大于对低超越概率水平的影响,与上节分析结果一致。③ 对比图4a~d高超越概率和低超越概率段可看出,图4a、b中曲线的离散程度明显大于图4c、d中曲线的离散程度,反映出b值和V4的敏感性,b值的变化对计算结果影响更大,较为敏感,V4的敏感性相对较弱。
图4 地震活动性参数b值和V4的敏感性分析
Fig.5 Sensitivity analysis of seismic activity parameters b-value and V44 结论
通过本文的研究和对比分析,可以得出以下几点认识:
(1)对b值和V4进行统计时,应根据地震统计区地震样本完备时段、活动期划分、不同震级段等因素,形成多种统计方案,选取最佳b值与V4组合方案,确定地震统计区的b值和V4。本文以郯庐地震带为研究实例,给出统计方案和过程,最终给出郯庐地震带的b=0.856,V4=2.822。
(2)使用不同的b值与V4组合,计算得到的不同超越概率水平下的基岩水平峰值加速度值有明显差异,但其变化具有一定的规律性。不同b值与V4组合对高超越概率水平的影响均大于对低超越概率水平的影响; 多种组合方案中,拟合相关系数高、线性关系好的组合计算得到的各概率基岩水平峰值加速度差值小,变化幅度小,反之亦然。
(3)当V4不变时,地震危险性分析的结果随b值的增加而减小; 当b值不变时,地震危险性分析的结果随V4的增加而增加。b值的变化对地震危险性分析的结果影响更大,b值较为敏感,V4的敏感性相对较弱。
中国地震区划图编制“地震活动性参数确定”工作组以及中国地震局地壳应力研究所刘冬英高级工程师对本研究提供了宝贵的资料,在此谨表示感谢!
- 陈凌,刘杰,陈颙,等.1998.地震活动性分析中余震的删除[J].地球物理学报,41(增刊):244-252.
- 国家地震局震害防御司.1995.中国历史强震目录(公元前23世纪-公元1911年)[M].北京:地震出版社.
- 胡聿贤.1999.地震安全性评价技术教程[M]. 北京:地震出版社,225-235.
- GB18306-2001,中国地震动参数区划图[S].
- 黄玮琼,时振粱,曹学锋.1989. b值统计中的影响因素及危险性分析中b值的选取[J].地震学报,11(4):351-361.
- 雷建成,高孟潭,吕红山,等.2010.地震带划分方案对地震活动性参数的影响[J].地震学报,32(4):457-465.
- 卢寿德.2005.GB17741-2005《工程场地地震安全性评价》宣贯教材[S].北京:中国标准出版社.
- 潘华,李金臣. 2006.地震统计区地震活动性参数b值及V4不确定性研究[J].震灾防御技术,1(3):218-224.
- 任雪梅. 2011. 地震区划中b值统计的若干问题研究[D]. 北京:中国地震局地球物理研究所.
- 苏有锦,李永莉,李忠华,等.2003.川滇地区区域地震目录完整性最小震级分析[J].地震研究,26(增刊):10-16.
- 王琼,曲延军,高歌,等.2011. 新疆天山南部构造区不同时段小地震目录完整性分析[J].地震研究,34(1):35-41.
- 谢卓娟.2009.1990年以来中国大陆及邻区地震资料的统计分析[D]. 北京:中国地震局地壳应力研究所.
- 鄢家全,韩 炜,高孟潭.1996.地震活动性参数的不确定性及其对区划结果的影响[J].中国地震,12(增刊):71-77.
- 中国地震局地壳应力研究所.2009. 新一代地震动参数区划图-1990 年后中国及邻区地震目录编制工作报告[R]. 北京.
- 中国地震局震害防御司.1999.中国近代地震目录(公元1912年-1990年 MS≥ 4.7)[M].北京:中国科学技术出版社.
- Console R,Gasparini C,Simoni B De,et al.1979.Preambolo al Catalogo Sismico Nazionale I criteri di informazione del CSN[J].Annals of Geophysics,32(1):37-77.