基于遥感影像的震后避难空间快速提取模型研究——以2021年云南漾濞MS6.4地震为例

(1.云南省地震局,云南 昆明 650224; 2.中国地震局工程力学研究所,黑龙江 哈尔滨 150080; 3.云南大学 地球科学学院,云南 昆明 650031)

无人机影像; 避难空间; 面向对象分类; GIS栅格化; 漾濞MS6.4地震

Study on the Rapid Extraction Model of Post-earthquake Shelter Sites Based on Remote Sensing Images:[WT4"]A Case Study of the Yangbi MS6.4 Earthquake
A Case Study of the Yangbi MS6.4 Earthquake]

(1.Yunnan Earthquake Agency,Kunming 650224,Yunnan,China)(2.Institute of Engineering Mechanics,China Earthquake Administration,Harbin 150080,Heilongjiang,China)(3.School of Earth Science,Yunnan University,Kunming 650031,Yunnan,China)

UAV images; shelter sites; object-oriented classification; GIS rasterization; the Yangbi MS6.4 Earthquake

DOI: 10.20015/j.cnki.ISSN1000-0666.2023.0013

备注

震后避难空间是居民遭遇地震时紧急疏散、避难、临时生活的重要区域。以无人机影像为基础,采用影像面向对象分类与GIS栅格化的分析方法,构建震后避难空间评价指标,建立基于遥感影像的震后避难空间快速提取模型,并以2021年云南漾濞MS6.4地震为例,将避难空间提取的结果与震后居民实际选取的避难空间进行比较。结果表明:模型共计提取可用避难空间70个,根据目标函数F得到最优避难空间5个,其中每个避难空间在漾濞MS6.4地震中实际帐篷数量分别为72、55、54、30、44顶,模型计算结果与实际结果匹配。
Emergency shelter sites are important for the earthquake-hit residents to evacuate and take refuge after an earthquake.Based on UAV remote sensing images,we use the object-oriented classification method and the GIS rasterization method to analyze the UAV images,thus to decide the evaluation indexes for post-earthquake shelter sites,and to build the rapid extraction model of post-earthquake shelter sites.We use our model to extract shelter sites in Yangbi County,and obtain 70 available shelters.And according to the objective function F,we obtain 5 optimal shelters.We compare our results with the actual shelter sites chosen by the local residents after the Yangbi MS6.4 Earthquake.The number of tents put up on 5 shelter sites after the Yangbi MS6.4 Earthquake was 72,55,54,30 and 44,respectively.The calculated results from the model match with the actual situation.
·