基于GIS和多变量决策树的地震滑坡道路中断风险应急评估模型

(1.中国地震局昆明地震预报研究所,云南 昆明 650224; 2.昆明理工大学 应急管理学院,云南 昆明 650500; 3.昆明市西山区防震减灾局,云南 昆明 650118)

道路中断风险; 地震滑坡; 多变量决策树; 应急评估

An Emergency Evaluation Approach to Road Disruption Risk Influenced by Earthquake-induced Landslide Using GIS and Multivariate Decision Tree
BAI Xianfu1,YANG Zhiquan2,LUO Weidong1,WANG Jie1,TIAN Peng1,DAI Yuqian3

(1.Kunming Institute of Earthquake Prediction,China Earthquake Administration,Kunming 650224,Yunnan,China)(2.Faculty of Public Safety and Emergency Management,Kunming University of Science and Technology,Kunming 650093,Yunnan,China)(3.Earthquake Administration of Xishan District,Kunming 650118,Yunnan,China)

road interruption risk; earthquake-induced landslides; the Multivariate Decision Tree; emergency evaluation

DOI: 10.20015/j.cnki.ISSN1000-0666.2023.0040

备注

在地震应急阶段,如何定量评估地震滑坡道路中断风险是一项亟待完善的关键技术。为解决这一难题,以2008年汶川MS8.0地震、2014年鲁甸MS6.5地震及2012年彝良MS5.7、5.6地震为案例开展地震滑坡道路中断风险应急评估模型的构建和检验。汶川研究区用来建立地震滑坡道路中断风险多变量决策树的应急评估模型,并对模型作有效性评价,鲁甸和彝良研究区用来对所建模型开展相似区域外延适用性的评价。通过P值检验模型统计学的显著性,使用Kappa值评价模型推断结果与实际情况的一致性。汶川研究区的P值为2.52×10-203,Kappa系数为0.91。说明使用模型计算出的道路中断风险是地震滑坡道路是否中断的良好指标。鲁甸和彝良研究区的P值为9.7×10-107,Kappa系数为0.81。这表明在允许一定误差的情况下,本研究建立的地震滑坡道路中断风险多变量决策树应急评估模型可以推广应用到其它类似地区。
In mountainous areas,roads are often damaged by earthquake-induced landslides.The degree of road damage and the existing functional state will have a very important impact on the whole earthquake emergency response.To solve this problem,in this paper we propose a new modle.To test our new model,we select four historical earthquake events for case study:the 2008 Wenchuan,Sichuan MS8.0 earthquake,the 2014 Ludian,Yunnan MS6.5 earthquake,and the 2012 Yiliang,Yunnan MS5.6&5.7 double earthquakes.Here,the Wenchuan earthquake case is for testing the effectiveness of our new model.The other three cases serve for testing the practicability of our model for the future earthquake disasters emergency assessment in other places.P-value and Kappa coefficient are used to examine the model's statistical portability.The computed P-value for the Sichuan area was less than 0.001(just 2.52×10-203)and the Kappa coefficient is 0.91.This suggests that the computed RIR values are good indicators of blocked-road occurrences.In the Yunnan study areas,the computed P-value is less than 0.001 too(just 9.7×10-107)and the Kappa coefficient is 0.81.The results from the Yunnan study areas suggest that the Multivariate Decision Tree can be introduced to another study areas and our approach can be used in other earthquake events.