|本期目录/Table of Contents|

[1]苑争一,闫 伟,牛安福,等.定点形变破年变异常自动识别应用研究*[J].地震研究,2020,43(02):394-401.
 YUAN Zhengyi,YAN Wei,NIU Anfu,et al.Application Research on Automatic Identification of Annual Cycle Breaking Anomalies in the Fixed-point Deformation[J].Journal of Seismological Research,2020,43(02):394-401.
点击复制

定点形变破年变异常自动识别应用研究*(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
43
期数:
2020年02期
页码:
394-401
栏目:
出版日期:
2020-06-10

文章信息/Info

Title:
Application Research on Automatic Identification of Annual Cycle Breaking Anomalies in the Fixed-point Deformation
作者:
苑争一1闫 伟1牛安福1赵 静1高 歌2
(1.中国地震台网中心,北京 100045; 2.新疆维吾尔自治区地震局,新疆 乌鲁木齐 830011)
Author(s):
YUAN Zhengyi1YAN Wei1NIU Anfu1ZHAO Jing1GAO Ge2
(1.China Earthquake Networks Center,Beijing 100045,China)(2.Xinjiang Uygur Autonomous Region Eorthquake Agency,Urumqi 830011,Xinjiang,China)
关键词:
奇异谱分析SSA 定点形变 预测效能检验
Keywords:
Singular Spectrum Analysis(SSA) fixed-point deformation assessment of earthquake forecast
分类号:
P315.725
DOI:
-
摘要:
基于奇异谱分析算法,以新疆东风煤矿钻孔倾斜EW分量和巴里坤水平摆倾斜NS分量为例,在去除典型干扰及长周期趋势变化的基础上,拟合观测资料背景年变序列。对于残差时间序列,结合震例进行动态R值检验,自动提取破年变异常特征时段,递归求解出了最高R值评分对应的异常判定准则。进而自动识别出具有最佳映震效能的破年变异常时段,实现了破年变异常判定的自动化和定量化,提高了前兆异常信号识别的可靠性和准确性。
Abstract:
Based on the Singular Spectrum Analysis(SSA)and the EW component of borehole tilt data in Xinjiang Dongfeng coal mine station,the NS component of quartz horizontal pendulum tiltmeter in Xinjiang Balikun station,this study has realized the fitting of the background annual variation information of the observation data by eliminating the typical interference and long period trend changes.The dynamic R value test was performed on the residual time series combined with the earthquake examples,and the annual cycle breaking anomalies are automatically extracted.At the same time,the anomaly determination criterion corresponding to the highest R value score is recursively solved.Then the annual cycle breaking periods are automatically identified with the best reflection performance on earthquakes,and the automation and quantification of the determination of anomalies are realized.Under the current level of knowledge and conditions,the reliability and accuracy of precursory abnormal signal recognition have been improved.

参考文献/References:

-

备注/Memo

备注/Memo:
收稿日期:2019-11-29
基金项目:国家重点研发计划(2018YFE0109700,2017YFC1500502)、中国地震台网中心2019年度青年科技基金(QNJJ201902)、中国地震局2019年度震情跟踪定向工作任务(2019010201)联合资助.

更新日期/Last Update: 2020-06-10