|本期目录/Table of Contents|

[1]路 畅,李 营,胡 乐,等.唐山地区土壤气Rn通量及其与地震活动的关系[J].地震研究,2022,45(02):241-248.[doi:10.20015/j.cnki.ISSN1000-0666.2022.0029]
 LU Chang,LI Ying,HU Le,et al.Study of the Flux of Soil Gas Rn and Its Relation with Seismicity in Tangshan Area[J].Journal of Seismological Research,2022,45(02):241-248.[doi:10.20015/j.cnki.ISSN1000-0666.2022.0029]
点击复制

唐山地区土壤气Rn通量及其与地震活动的关系(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
45
期数:
2022年02期
页码:
241-248
栏目:
出版日期:
2022-05-20

文章信息/Info

Title:
Study of the Flux of Soil Gas Rn and Its Relation with Seismicity in Tangshan Area
作者:
路 畅12李 营2胡 乐2赵 策1刘兆飞23邵俊杰2陈 志2
(1.中国地震局地球物理研究所,北京 100081; 2.中国地震局地震预测研究所,北京 100036; 3.中国地质大学(北京)地球科学与资源学院,北京 100083)
Author(s):
LU Chang12LI Ying2HU Le2ZHAO Ce1LIU Zhaofei23SHAO Junjie2CHEN Zhi2
(1.Institute of Geophysics,China Earthquake Administration,Beijing 100081,China)(2.Institute of Earthquake Forecasting,China Earthquake Administration,Beijing 100036,China)(3.School of Earth Science and Resources,China University of Geosciences(Beijing),Beijing 100083,China)
关键词:
土壤气 Rn通量 Rn浓度 b值 唐山地区
Keywords:
soil gas Rn flux Rn concentration b-value Tangshan area
分类号:
P315.724
DOI:
10.20015/j.cnki.ISSN1000-0666.2022.0029
摘要:
使用2021年唐山地区196个测点的土壤气Rn通量数据,结合2010年测量得到的土壤气浓度数据,研究了唐山地区土壤气体Rn通量的地球化学特征及其控制因素。结果表明:①土壤气Rn通量范围为0.01~409.31 mBq/(m2·s),平均值为40.58 mBq/(m2·s),高值分布在断裂带或断裂带交汇位置; ②唐山地区土壤气Rn浓度与通量高值空间分布有较好的一致性,在研究区北部,较低的b值与土壤气Rn通量的高值空间对应关系较好; ③ Rn通量测量受环境(地温、气温与海拔)影响较小,并与近期小震活动相关不明显; ④土壤气Rn通量和浓度与b值的空间分布特征一致,Rn高通量与高浓度对应低b值,表明土壤气Rn脱气强度可能与活动断裂带的高渗透性以及高应力有关。
Abstract:
Using the data of the flux of soil gas Rn measured by us at 196 points in Tangshan region in 2021,together with the data of the soil gas concentrations measured in this region in 2010,we study the geochemical variation and the controlling factors of the flux of soil gas Rn.The results show that:①The flux of soil gas Rn ranges from 0.01 to 409.31 mBq/(m2·s),with a mean value of 40.58 mBq/(m2·s).The high values are distributed in the fault zones or interaction parts of the fault zones.②The concentration of soil gas Rn is consistent with the spatial distribution of high values of the flux.In the northern part of the study area,the lower b-values spatially correspond well with the high values of the flux of soil gas Rn.③Rn flux measurements are less sensitive to the environmental factors(ground temperature,air temperature and elevation),and are insignificantly related to the activity of present-day,small earthquakes.④Fluxes and concentrations of soil gas Rn are consistent with the spatial distribution of b-values; high fluxes and high concentrations corresponding to low b-values.This suggests that the intensity of the degassing of soil gas Rn may be related to the high permeability of active fault zones and the high stress in the active fault zones.

参考文献/References:

车用太.2002.地下流体数字观测技术[M].北京:地震出版社.
成智慧,郭正府,张茂亮,等.2012.腾冲新生代火山区温泉CO2气体排放通量研究[J].岩石学报,28(4):1217-1224.
杜建国,李营,崔月菊,等.2018.地震流体地球化学[M].北京:地震出版社.
郭正府,郑国东,孙玉涛,等.2017.中国大陆地质源温室气体释放[J].矿物岩石地球化学通报,36(2):204-212.
虢顺民,李志义,程绍平,等.1977.唐山地震区域构造背景和发震模式的讨论[J].地质科学,4:305-320.
韩晓昆.2014.首都圈地震重点监测区土壤气体地球化学[D].北京:中国地震局地震预测研究所.
郝书俭,李建华,于之水,等.1998.唐山地震发震构造的浅层地震探测[J].中国地震,14(4):78-84.
江娃利.2006.有关1976年唐山地震发震断层的讨论[J].地震地质,28(2):312-318.
李建华,郝书俭,胡玉台,等.1998.1976年唐山地震发震断裂的活动性研究[J].地震地质,20(1):27-33.
李静,陈志,陆丽娜,等.2018.夏垫活动断裂CO2、Rn、Hg脱气对环境的影响[J].矿物岩石地球化学通报,37(4):629-638,795.
李营,杜建国,王富宽,等.2009.延怀盆地土壤气体地球化学特征[J].地震学报,31(1):82-91.
刘保金,曲国胜,孙铭心,等.2011.唐山地震区地壳结构和构造:深地震反射剖面结果[J].地震地质,33(4):901-912.
刘启元,王峻,陈九辉,等.2007.1976年唐山大地震的孕震环境:密集地震台阵观测得到的结果[J].地学前缘,14(6):205-213.
刘瑞丰,高景春,陈运泰,等.2008.中国数字地震台网的建设与发展[J].地震学报,30(5):533-539.
刘兆飞.2020.鄂尔多斯西缘断裂带土壤气体地球化学特征[D].北京:中国地震局地震预测研究所.
罗光伟,石锡忠.1980.岩石标本受压时氡和钍射气量的实验结果[J].地震学报,2(2):90-96.
盛艳蕊,张子广,丁志华,等.2020.唐山断裂带土壤气地球化学特征分析[J].震灾防御技术,15(2):452-462.
苏鹤军,王宗礼,曹玲玲,等.2020.断裂带土壤气测量方法在断层活动性研究中的应用——以嘉峪关断层为例[J].中国地质,47(6):1894-1903.
孙小龙,刘耀炜,付虹,等.2020.我国地震地下流体学科分析预报研究进展回顾[J].地震研究,43(2):216-231,417.
陶明信,徐永昌,史宝光,等.2005.中国不同类型断裂带的地幔脱气与深部地质构造特征[J].中国科学:地球科学,35(5):441-451.
王诗东,庹先国,李怀良,等.2011.氡气测量法——高密度电法在断层定位中的应用[J].地学前缘,18(2):315-320.
王喜龙,李营,杜建国,等.2017.首都圈地区土壤气Rn,Hg,CO2地球化学特征及其成因[J].地震学报,39(1):85-101,155.
吴果,周庆,冉洪流.2019.震级-频度关系中b值的极大似然法估计及其影响因素分析[J].地震地质,41(1):21-43.
杨江,李营,陈志,等.2019.唐山断裂带南西段和北东段土壤气Rn和CO2浓度特征[J].地震,39(3):61-70.
尹宝军.2010.唐山井地下水动态特征研究[D].北京:中国地震局地球物理研究所.
张磊,高小其,包创,等.2018.呼图壁地下储气库构造气体地球化学特征[J].地震地质,40(5):1059-1071.
张炜,王吉易,鄂秀满.1988.水文地球化学预报地震的原理与方法[M].北京:教育科学出版社.
赵红坤,王万丽,周晓成,等.2020.山西地震带北段与张家口—渤海地震带不同深度CO2和Rn气体通量的差异性[J].地震地磁观测与研究,41(2):113-122.
赵元鑫.2021.流体地球化学与构造活动关系的地质统计研究[D].北京:中国地震局地震预测研究所.
周晓成,孙凤霞,陈志,等.2017.汶川MS8.0地震破裂带CO2、CH4、Rn和Hg脱气强度[J].岩石学报,33(1):291-303.
周志华,赵烽帆,李营,等.2014.首都圈土壤气中氡环境地球化学特征[J].生态学杂志,33(7):1729-1733.
Buttitta D,Caracausi A,Chiaraluce L,et al. 2020.Continental degassing of helium in an active tectonic setting(northern Italy):the role of seismicity[J].Scientific Reports,10(162):1-13.
Chen Z,Li Y,Liu Z F,et al. 2018.Radon emission from soil gases in the active fault zones in the capital area and its environmental effects[J].Scientific Reports,8:1-12.
Chiodini G,Caliro S,Cardellini C,et al. 2008.Carbon isotopic composition of soil CO2 efflux,a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas[J].Earth and Planetary Science Letters,274(3):372-379.
D’Alessandro A,Scudero S,Siino M,et al. 2020.Long-term monitoring and characterization of soil radon emission in a seismically active a rea[J].Geochemistry Geophysics Geosystems,21(7):1-14.
Ghosh D,Deb A,Sengupta R.2009.Anomalous radon emission as precursor of earthquake[J].Journal of Applied Geophysics,69(2):67-81.
Gutenberg B,Richter C F.1944.Frequency of earthquakes in California[J].Bulletin of the Seismological Society of America,34(4):185-188.
Ichedef M,Sac M M,Camgoez B,et al. 2013.Soil gas radon concentrations measurements in terms of great soil groups[J].Journal of Environmental Radioactivity,126(2013):165-171.
King C,King B,Evans W,et al. 1996.Spatial radon anomalies on active faults in California[J].Applied Geochemistry,11(4):497-510.
Lehmann B E,Ihly B,Salzmann S,et al. 2004.An automatic static chamber for continuous 220Rn and 222Rn flux measurements from soil[J].Radiation Measurements,38(1):43-50.
Li Y,Du J G,Wang X,et al. 2013.Spatial variations of soil gas geochemistry in the Tangshan area of Northern China[J].Terrestrial,Atmospheric and Oceanic Sciences,24(3):323-332.
Mearns E,Sornette D.2021.A transfer fault complex to explain the geodynamics and faulting mechanisms of the 1976 M7.8 Tangshan earthquake China[J].Journal of Asian Earth Sciences,(7/8):104738.
Miklavi I,Radoli V,Vukovi B,et al. 2008.Radon anomaly in soil gas as an earthquake precursor[J].Applied Radiation and Isotopes,66(10):1459-1466.
Muirhead J D,Fischer T P,Oliva S J,et al. 2020.Displaced cratonic mantle concentrates deep carbon during continental rifting[J].Nature,582(7810):67-72.
Muto J,Yasuoka Y,Miura N,et al. 2021.Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake[J].Scientific Reports,11(1):7451.
Peiffer L,Bernard-Romero R,Mazot A,et al. 2014.Fluid geochemistry and soil gas fluxes(CO2-CH4-H2S)at a promissory Hot Dry Rock Geothermal System:The Acoculco caldera,Mexico[J].Journal of Volcanology & Geothermal Research,284(2014):122-137.
Pinault J L,Baubron J C.1996.Signal processing of soil gas radon,atmospheric pressure,moisture,and soil temperature data:A new approach for radon concentration modeling[J].Journal of Geophysical Research Atmospheres,101(B2):3157-3172.
Reddy D V,Sukhija B S,Rama.1996.Search for correlation between radon and high-yield borewells in granitic terrain[J].Journal of Applied Geophysics.34(3):221-228.
Rogie J D,Kerrick D M,Chiodini G,et al. 2000.Flux measurements of nonvolcanic CO2 emission from some vents in central Italy[J].Journal of Geophysical Research,105(B4):8435-8445.
Rutte H K,Cox S C,Ward N F D,et al. 2016.Aquifer permeability change caused by a near-field earthquake,Canterbury,New Zealand[J].Water Resources Research,52(11):8861-8878.
Steinitz G,Begin Z B,Gazit-Yaari N.2003.Statistically significant relation between radon flux and weak earthquakes in the Dead Sea rift valley[J].Geology,31(6):505-508.
Toutain J P,Baubron J C.1999.Gas geochemistry and seismotectonics:a review[J].Tectonophysics,304(1-2):1-27.
Utkin V I,Yurkov A K.2010.Radon as a tracer of tectonic movements[J].Russian Geology and Geophysics,51(2):220-227.
Walter D,Li V L,Lisa G A,et al. 2020.CO2 release to the atmosphere from thermal springs of Sperchios Basin and northern Euboea(Greece):The contribution of “hidden” degassing[J].Applied Geochemistry,119(12):104660.
Wang X,Li Y,Du J G,et al. 2014.Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area,North China[J].Radiation Measurements,60(2014):8-14.
Yuce G,Fu C C,D’Alessandro W,et al. 2017.Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea Fault and Karasu Fault in the Amik Basin(Hatay),Turkey,Turkey[J].Chemical Geology,469(2017):129-146.
Zhang M L,Guo Z F,Xu S,et al. 2021.Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau[J].Nature Communications,12(1):1-10.
Zhou Z H,Tian L,Zhao J,et al.2020.Stress-Related Pre-Seismic Water Radon Concentration Variations in the Panjin Observation Well,China(1994-2020)[J].Frontiers in Earth Science,8:596283.
Zhou Z H,Zhong J,Zhao J,et al.2021.Two Mechanisms of Earthquake-Induced Hydrochemical Variations in an Observation Well[J]. Water,13:2385.

备注/Memo

备注/Memo:
收稿日期:2022-01-20
基金项目:高压物理与地震科技联合实验室开放基金(2021IEF0101)和国家自然科学基金面上项目(42073063)联合资助.

更新日期/Last Update: 2022-05-20