|本期目录/Table of Contents|

[1]刘永梅,崔月菊,孙凤霞,等.内蒙古—辽宁交界地区地下水化学类型及其成因分析[J].地震研究,2023,46(01):58-67.[doi:10.20015/j.cnki.ISSN1000-0666.2023.0007 ]
 LIU Yongmei,CUI Yueju,SUN Fengxia,et al.Hydrochemical Types and the Genesis of the Ground Water in the Border Area of Inner Mongolia and Liaoning Province[J].Journal of Seismological Research,2023,46(01):58-67.[doi:10.20015/j.cnki.ISSN1000-0666.2023.0007 ]
点击复制

内蒙古—辽宁交界地区地下水化学类型及其成因分析(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
46
期数:
2023年01期
页码:
58-67
栏目:
地震地下流体监测预报理论及技术应用专栏
出版日期:
2023-01-01

文章信息/Info

Title:
Hydrochemical Types and the Genesis of the Ground Water in the Border Area of Inner Mongolia and Liaoning Province
作者:
刘永梅1崔月菊2孙凤霞2仵柯田3姜 莉2刘改梅4陈立峰1杜建国2
(1.内蒙古自治区地震局,内蒙古 呼和浩特 010010; 2.中国地震局地震预测研究所 高压物理与地震科学联合实验室,中国地震局地震预测重点实验室,北京 100036; 3.陕西国际商贸学院,陕西 西安 712046; 4.内蒙古自治区巴彦淖尔市地震局,内蒙古 巴彦淖尔 015000)
Author(s):
LIU Yongmei1CUI Yueju2SUN Fengxia2WU Ketian3JIANG Li2LIU Gaimei4CHEN Lifeng1DU Jianguo2
(1.Earthquake Agency of Inner Mongolia Autonomous Region,Hohhot 010010,Inner Mongolia,China)(2.United Laborary of High-Pressure and Earthquake Science,Key Laboratory of Earthquake Prediction,Institute of Earthquake Forecasting,China Earthquake Administration,Beijing 100036,China)(3.Shaanxi Institute of International Trade & Commerce,Xi'an 712046,Shaanxi,China)(4.Bayannao'er Earthquake Agency,Inner Mongolia Autonomous Region,Bayannao'er 015000,Inner Mongolia,China)
关键词:
地下水 氢氧同位素 水化学类型 补给来源 内蒙古—辽宁交界
Keywords:
ground water hydrogen and oxygen isotope hydrochemical types supply source the border area between Inner Mongolia and Liaoning Province
分类号:
P315.723
DOI:
10.20015/j.cnki.ISSN1000-0666.2023.0007
摘要:
通过对内蒙古东部—辽宁西部地区主要活动断裂带及其周边25个泉、井、河流、水库取样点的氢氧同位素组成及主要离子含量进行测试,讨论了该地区地下水的物质来源及其与地震活动的关系。结果表明:①研究区地下水主要来源于大气降水。水样TDS范围为40.14~1 720.87 mg/L,低矿化度(TDS<200 mg/L)水样的离子主要来源于岩石溶解和大气输入,而其它水样的离子主要来源于岩石溶解和深部流体,大气输入相对很小,但各测区深部流体的贡献有明显差别; ②低温热水、中温热水及高温热水均为花岗岩裂隙水,其水化学类型为硫酸型和重碳酸型,富含碱性长石的火成岩溶解导致地下水富Na+,周围构造活动相对活跃。其中,RST水样更接近深部储水层的热水特征,表明其受深部流体影响为主; ③NS和AES水样位于阴山北部高原区,为CO2过饱和水,属重碳酸钠型; AES受干旱区季节性降水淋滤表层可溶盐、水体的蒸发以及深部富CO2流体混入造成其矿化度最高; ④KZHQ和BYNE水样分别处于碳酸盐岩含水层和含砾砂岩含水层,由于Ca2+参与了矿物沉淀,水中相对富集Na+,形成重碳酸钠型水。在地震活动性较强的地段,地下水化学成分受深部流体的影响较大。
Abstract:
The hydrochemical types and origins of the underground water collected from 25 hot springs(wells)at the main active fault zones in the border area between Inner Mongolia and Liaoning Province were discussed based on the isotope ratios of hydrogen and oxygen as well as ion concentrations.The results show that:①Values of δD and δ18O range from -106.7‰ to -57.3‰ and -15.6‰ to -7.5‰,respectively,which indicate the waters have a meteoric origin.The TDS values of water samples range from 40.14 mg/L to 1 720.87 mg/L.The ions of the water samples with low salinity(TDS<200 mg/L)mainly come from rock dissolution and atmospheric input,while the ions of other water samples mainly come from rock dissolution and deep fluid.The atmospheric input is relatively small,but the contribution of deep fluid at each survey point is significantly different; ②The low-temperature,medium-temperature and high-temperature water is all granite fissure water,and their hydrochemical types are sulfuric acid type and bicarbonate type.The dissolution of alkali-feldspar in igneous rocks leads to the enrichment of Na+ in groundwater,and the surrounding tectonic activities are relatively active.Among them,the RST water sample is closer to the hot water characteristics of deep water storage layer,indicating that the water sample is mainly affected by deep fluid; ③The NS well and AES water samples from the northern plateau area of the Yinshan Mountain are CO2 supersaturated water,and the soda water is Na?Ca?Mg-HCO3 and Na?Mg-HCO3.AES water samples have the highest salinity due to the leaching of surface soluble salts by seasonal precipitation in arid areas,which can be attributed to meteoric water leaching soluble salts and mixture with the CO2-enriched,deep fluids.④The KZHQ and BYNE observation well are located in carbonate rock aquifer and gravel sandstone aquifer respectively.Because Ca2+ participates in mineral precipitation,Na+ is relatively enriched in the water,forming sodium-bicarbonate-type water.The chemical composition of groundwater is greatly affected by deep fluids in the seismically active region.

参考文献/References:

车用太,鱼金子.2006.地震地下流体学[M].北京:气象出版社.
崔月菊,孙凤霞,杜建国.2022.中国大陆东部温泉流体来源解析与地震地球化学异常判识方法[J].地震研究,45(2):199-216.
杜建国,李营,崔月菊,等.2018.地震流体地球化学[M].北京:地震出版社.
范基姣,佟元清,李金英,等.2008.我国高氟水形成特点的主要影响因子及降氟方法[J].安全与环境工程,(1):14-16.
高小其,梁卉,王海涛,等.2015.北天山地区泥火山的地球化学成因[J].地震地质,37(4):1215-1224.
郭少峰,贾德彬,王蓉,等.2015.内蒙古正蓝旗大气降水氢氧稳定同位素特征分析[J].中国科技论文,(10):2580-2584.
李小飞,张明军,马潜,等.2012.我国东北地区大气降水稳定同位素特征及其水汽来源[J].环境科学,33(9):2924-2931.
李学礼,孙占学,刘金辉.2010.水文地球化学(第3版)[M].北京:原子能出版社.
李英康,高锐,姚聿涛,等.2014.大兴安岭造山带及两侧盆地的地壳速度结构[J].地球物理学进展,29(1):73-83.
梁礼革,朱明占,朱思萌,等.2015.桂东地区地热水中氟的分布及其富集过程研究[J].安全与环境工程,(1):1-6.
刘春国,晏锐,樊春燕,等.2022.我国地震地下流体监测现状分析及展望[J].地震研究,45(2):161-172.
刘耀炜,任宏微,张磊,等.2015.鲁甸6.5级地震地下流体经典异常与前兆机理分析[J].地震地质,37(1):307-318.
刘轶男,孙凤霞,崔月菊,等.2017.吉林省松原地区地震监测台站水化学特征[J].地球科学进展,32(8):810-817.
柳春晖.2006.白庙温泉、赤城温泉及塘子庙温泉的水化学及同位素研究[D].北京:中国地质大学(北京).
路畅,李营,胡乐,等.2022.唐山地区土壤气Rn通量及其与地震活动的关系[J].地震研究,45(2):241-248.
马致远,余娟,李清,等.2008.关中盆地地下热水环境同位素分布及其水文地质意义[J].地球科学与环境学报,(4):396-401.
裴惠娟,韩晓明,张帆,等.2015.内蒙古通辽5.3级地震序列特征及发震背景分析[J].地震工程学报,37(1):242-247.
孙凤霞,崔月菊,王海燕,等.2020.辽宁省地震监测站地下水化学类型及成因分析[J].地震学报,42(1):79-90.
孙小龙,王广才,邵志刚,等.2016.海原断裂带土壤气与地下水地球化学特征研究[J].地学前缘,23(3):140-150.
汪成民.1991.中国地震地下水动态观测网的科学创新与动态前景[J].地震学刊,3:4-8.
王丹璐,张有贤,牛武江.2015.兰州市冬季细颗粒中微量金属元素及无机可溶性离子来源分析[J].环境工程学报,9(8):3944-3954.
王瑞久.1985.氧-18的高程效应及其水文地质解释:以太原西山为例[J].工程勘察,(1):51-54.
杨竹转,邓志辉,杨跃文,等.2018.2014年鲁甸MS6.5地震前云南丽江地下流体的异常变化[J].地震地质,40(2):480-498.
易春瑶,汪丙国,靳孟贵.2013.水—土—植物系统中氟迁移转化规律的研究进展[J].安全与环境工程,(6):59-64.
张桂铭,刘文锋.2013.基于震例研究的地震预测预报分析[J].中国地震,29(4):528-536.
张磊,刘耀炜,任宏微,等.2016.氢氧稳定同位素在地下水异常核实中的应用[J].地震地质,38(3):721-731.
张炜斌.2013.京西北盆岭构造区温泉流体地球化学[D].北京:中国地震局地震预测研究所.
张宗祜,李烈荣.2005.中国地下水资源(内蒙古卷)[M].北京:中国地图出版社.
钟骏,王博,周志华.2018.精河MS6.6地震前地下流体异常特征分析[J].中国地震,34(4):754-764.
Capecchiacci F,Tassi F,Vaselli O, et al.2015.A combined geochemical and isotopic study of the fluids discharged from the Montecatini thermal system(NW Tuscany,Italy)[J].Geochemistry,59:33-46.
Chen Z,Du J,Zhou X, et al.2014.Hydrochemistry of the hot springs in western Sichuan Province related to the Wenchuan MS8.0 earthquake[J].The ScientificWorld Journal,2014:1-13.
Du J,Fu B,Guo W, et al.2010.Significance of prehistoric liquefaction features in the Xilinhot District,Inner Mongolia,Northern China[J].Terrestrial Atmospheric and Oceanic Sciences,21(5):767-779.
Du J,Si X,Chen Y, et al.2008.Geochemical anomalies connected with great earthquakes in China[M]//Stefánsson(Ed),Geochemistry Research Advances,New York:Nova Science Publishers,57-92.
Qi J H,Xu M,An C J, et al.2017.Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau,China[J].Physics of the Earth and Planetary Interiors,263:12-22.
Rozanski K,Araguas-Araguas L,Gonfiantinni R.1993.Isotopic patterns in modern global precipitation[M]//Swart P K,Lohmann K C,McKenzie J.Climate Change in Continental Isotopic Records. Washington DC:American Geophysical Union,1-36.
Stober I,Bucher K.1999.Deep groundwater in the crystalline basement of the Black Forest region[J].Appl Geochem,14:237-254.
GB 5749—2016,生活饮用水卫生标准[S].

备注/Memo

备注/Memo:
收稿日期:2022-02-21.
基金项目:2021年度内蒙古地震局局长基金课题(2021JC05)、2022年度震情跟踪定向工作任务(2022010316)和2021年度河北省地震科技星火计划项目攻关项目(DZ202108090107)联合资助.
第一作者简介:刘永梅(1983-),工程师,主要从事与地震、构造相关的水文与气体地球化学等研究.E-mail:bxiiwangg@126.com.
通讯作者简介:杜建国(1956-),研究员,主要从事地球化学、地震地质和岩石物理研究.E-mail:jianguodu@hotmail.com.
更新日期/Last Update: 2023-01-01