|本期目录/Table of Contents|

[1]王锦红,蒋海昆.基于地震观测数据的机器学习地震预测研究综述[J].地震研究,2023,46(02):173-187.[doi:10.20015/j.cnki.ISSN1000-0666.2023.0022 ]
 WANG Jinhong,JIANG Haikun.Research Progress in Field of Earthquake Prediction by Machine Learning Based on Seismic Data[J].Journal of Seismological Research,2023,46(02):173-187.[doi:10.20015/j.cnki.ISSN1000-0666.2023.0022 ]
点击复制

基于地震观测数据的机器学习地震预测研究综述(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
46
期数:
2023年02期
页码:
173-187
栏目:
出版日期:
2023-03-10

文章信息/Info

Title:
Research Progress in Field of Earthquake Prediction by Machine Learning Based on Seismic Data
作者:
王锦红1蒋海昆2
(1.中国地震局地震预测研究所,北京 100036; 2.中国地震台网中心,北京 100045)
Author(s):
WANG Jinhong1JIANG Haikun2
(1.Institute of Earthquake Forecasting,China Earthquake Administration,Beijing 100036,China)(2.China Earthquake Networks Center,Beijing 100045,China)
关键词:
地震预测 机器学习 特征提取 模型评价
Keywords:
earthquake prediction machine learning feature extraction model evaluation
分类号:
P315.7
DOI:
10.20015/j.cnki.ISSN1000-0666.2023.0022
摘要:
机器学习突出的隐式特征提取和复杂任务处理能力正推动着地震预测科学的发展,为系统了解机器学习技术在地震预测领域的发展现状,从指定时空窗的地震震级预测、发震位置和发震时间估计三方面,综述了国内外机器学习在地震预测领域中的应用,其中在震级预测问题上AI应用最为广泛; 总结了机器学习地震预测的主要特征参数、模型和评价相关问题,从多种评价机制中探索地震活动性参数对地震预测结果的影响,并对地震预测领域存在的问题进行初步讨论和展望。在可预见的未来,AI技术的引入和应用领域的拓展,有可能引领地震预测领域的持续发展。 关键词:地震预测; 机器学习; 特征提取; 模型评价
Abstract:
Machine learning's prominent implicit feature extraction and complex task processing capabilities are driving the science of earthquake prediction.In order to systematically understand the development status of machine learning technology in the field of earthquake prediction,this paper focuses on the application of machine learning in the field of earthquake prediction at home and abroad in recent years from the three aspects of earthquake magnitude prediction,earthquake location and earthquake occurrence time estimation in a specified time-space window,among which AI is the most widely used in earthquake magnitude prediction.In addition,this paper summarizes the main characteristic parameters,models and evaluation related issues of machine learning earthquake prediction,and explores the influence of seismicity parameters on earthquake prediction results from various evaluation mechanisms.Finally,a preliminary discussion and outlook on the problems existing in the field of earthquake prediction will be conducted.In the foreseeable future,the introduction of AI technology and the expansion of application fields are likely to lead the continuous development of the field of earthquake prediction.

参考文献/References:

-

备注/Memo

备注/Memo:
收稿日期:2022-08-22.
基金项目:地震动力学国家重点实验室开放基金(LED2022B05).
第一作者简介:王锦红(1999-),硕士研究生在读,主要从事人工智能强余震预测研究.E-mail:17866618823@163.com.
通讯作者简介:蒋海昆(1964-),研究员,主要从事余震统计、余震机理及余震预测研究.E-mail:jianghaikun@seis.ac.cn.
更新日期/Last Update: 2023-03-10