|本期目录/Table of Contents|

[1]苏闻浩,刘启方.基于BP神经网络的场地等效剪切波速变化预测研究[J].地震研究,2024,47(02):280-289.[doi:10.20015/j.cnki.ISSN1000-0666.2024.0016]
 SU Wenhao,LIU Qifang.Research on Prediction of Site Equivalent Shear Wave Velocity Change Based on BP Neural Network[J].Journal of Seismological Research,2024,47(02):280-289.[doi:10.20015/j.cnki.ISSN1000-0666.2024.0016]
点击复制

基于BP神经网络的场地等效剪切波速变化预测研究(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
47
期数:
2024年02期
页码:
280-289
栏目:
出版日期:
2024-06-01

文章信息/Info

Title:
Research on Prediction of Site Equivalent Shear Wave Velocity Change Based on BP Neural Network
作者:
苏闻浩刘启方
(苏州科技大学 江苏省结构工程重点实验室,江苏 苏州 215009)
Author(s):
SU WenhaoLIU Qifang
(Suzhou University of Science and Technology,Key Laboratory of Structure Engineering of Jiangsu Province,Suzhou 215009,Jiangsu,China)
关键词:
神经网络 等效剪切波速 场地非线性 参数预测 地表峰值加速度
Keywords:
pulse-like ground motion frame-shear structure buckling restrained braces damping performance
分类号:
P315.7
DOI:
10.20015/j.cnki.ISSN1000-0666.2024.0016
摘要:
利用日本KiK-net台网提供的407个台站的30 952条地震动记录,提出了一种基于BP神经网络的场地等效剪切波速比变化预测模型。模型采用了均方误差函数及Adam优化算法,由3个输入参数、5个隐藏神经元及1个输出参数组成。输入参数为地面峰值加速度PGA、Arias烈度Ia及场地剪切波速VS30,输出为场地等效剪切波速比(VSr)。研究结果表明:该神经网络模型残差对于各输入变量整体呈现出无偏的特性,在大部分的软硬场地中均有较好的预测性能,该模型预测得到的PGA关于VS30的相关系数曲线与用传统的最小二乘法回归得到的函数曲线相比,其相关系数有更好的表现。该模型预测曲线显示,B类场地在PGA达到175 cm/s2时,场地剪切波速下降5%,D、E类场地在PGA达到140 cm/s2时,场地剪切波速下降5%,多数场地的非线性阈值为50~100 cm/s2。PGA在该网络模型中占据着较高的权重,为场地等效剪切波速变化的最主要控制参数。该网络模型捕捉到场地等效剪切波速比随PGA的增大有下降的趋势,而较为松软的D、E类场地受PGA影响更大,下降幅度更大。
Abstract:
In this paper,a total of 30952 records from 407 stations of the Japanese KiK-net is used to propose a prediction model for the change of equivalent shear wave velocity ratio based on BP neural network.The model adopts the mean square error function and the Adam optimization algorithm,consists of three inputs,five hidden neurons and one output.The input parameters are Peak Ground Acceleration(PGA),Arias intensity(Ia)and site VS30.The output parameter is site equivalent shear wave velocity ratio(VSr).The research shows that the residual error of the network model is unbiased for each input variable,and has good prediction performance in many kinds of sites.Compared with the function curve of the traditional least-square method,the neural network model has a relatively better performance.In the prediction curve of the network model,the shear wave velocity of the site of Class B decreases by 5% when the PGA reaches about 175 cm/s2,and the shear wave velocity of the sites of Class D and E decreases by 5% when the PGA reaches about 140 cm/s2.The nonlinear threshold of most sites is between 50~100 cm/s2.PGA occupies a high weight in the network model and is the main controlling parameter of the site equivalent shear wave velocity change.The network model captures that the equivalent shear wave velocity ratio of the site has a downward trend with the increase of PGA.At the same time,it shows that the Class D and E sites are greatly affected by PGA,and the declineing range is larger.

参考文献/References:


董凯月.2020.基于深度神经网络的地下地震动参数预测研究[D].哈尔滨:哈尔滨工业大学.
Dong K Y.2020.Study on the prediction of underground motion parameters based on deep neural network[D].Harbin:Harbin Institute of Technology.(in Chinese)
刘启方,陈长龙.2022.基于移动窗解卷积法的2011年日本东北MW9.0大地震场地非线性时变识别[J].地震学报,44(1):96-110.
Liu Q F,Chen C L.2022.Identification of the temporal changes of site nonlinearity during 2011 MW9.0 Tohoku earthquake by moving time window deconvolution method[J].Acta Seismologica Sinica,44(1):96-110.(in Chinese)
苗雨,施洋,王苏阳,等.2018.基于竖向台阵地震记录的非线性场地反应研究[J].自然灾害学报,27(6):51-58.
Miao Y,Shi Y,Wang S Y,et al.2018.Assessing nonlinear soil behavior using vertical array data:A case at TCGH16 station from KiK-Net in Japan[J].Journal of Natural Disasters,27(6):51-58.(in Chinese)
苗雨,施洋,张昊,等.2021.基于地震观测记录的场地竖向非线性性质[J].北京工业大学学报,47(7):669-679.
Miao Y,Shi Y,Zhang H,et al.2021.Investigating vertical nonlinearity of site using KiK-net seismic data[J].Journal of Beijing University of Technology,47(7):669-679.(in Chinese)
万永革,李鸿吉.1995.人工神经网络在地球物理中的应用综述[J].国际地震动态,(1):9-14.
Wan Y G,Li H J.1995.Overview of the application of artificial neural networks in Geophysics[J].Progress in Earthquake Sciences,(1):9-14.(in Chinese)
张亚沛.2019.基于KIK-NET数据库的土层特性识别及地下地震动幅值特性研究[D].哈尔滨:哈尔滨工业大学.
Zhang Y P.2019.Research on identification of soil characteristics and amplitude characteristics of underground motion based on KiK-Net database[D].Harbin:Harbin Institute of Technology.(in Chinese)
Alavi A H,Gandomi A H.2011.Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing[J].Computers & Structures,89(23-24):2176-2194.
Benito B,Herraiz M.1997.An approach to the measurement of the potential structural damage of earthquake ground motions[J].Earthquake Engineering and Structural Dynamics,26:79-92.
Beresnev I A,Wen K L.1996.Nonlinear soil response—A reality?[J].Bulletin of the Seismological Society of America,86(6):1964-1978.
Chin B H,Aki K.1991.Simultaneous study of the source path and site effects on strong ground motion during the 1989 Loma Prieta earthquake:a preliminary result on pervasive nonlinear site effects[J].Bulletin of the Seismological Society of America,81(5):1859-1884.
Chousianitis K,Del G V,Kalogeras I,et al.2014.Predictive model of Arias intensity and Newmark displacement for regional scale evaluation of earthquake-induced landslide hazard in Greece[J].Soil Dynamics and Earthquake Engineering,65(4):11-29.
Chousianitis K,Del G V,Sabatakakis N,et al.2016.Assessment of earthquake-induced landslide hazard in Greece:From Arias intensity to spatial distribution of slope resistance demand[J].Bulletin of the Seismological Society of America,106(1):174-188.
Derras B,Bard P Y,Cotton F.2014.Towards fully data driven ground-motion prediction models for Europe[J].Bulletin Earthquake Engineering,12(1):495-516.
Dhanya J,Raghukanth S T G.2017.Ground motion prediction model using artificial neural network[J].Pure and Applied Geophysics,175(3):1035-1064.
Dhanya J,Raghukanth S T G.2020.Neural network-based hybrid ground motion prediction equations for Western Himalayas and North-Eastern India[J].Acta Geophysica,172(3):762-781.
Garson G D.1991.Interpreting neural-network connection weights[J].AI Expert,6:47-51.
Gevrey M,Dimopoulos I,Lek S.2003.Review and comparison of methods to study the contribution of variables in artifificial neural network models[J].Ecological Modelling,160(3):249-264.
Ghofrani H,Atkinson G M,Goda K.2013.Implications of the 2011 M9.0 Tohoku Japan earthquake for the treatment of site effects in large earthquakes[J].Bulletin of Earthquake Engineering,11(1):171-23.
Kerb T,Ting S B.2005.Neural network estimation of ground peak acceleration at stations along Taiwan high-speed rail system[J].Engineering Applications of Artificial Intelligence,18(7):857-866.
Kingma D P,Ba J.2014.Adam:A method for stochastic optimization[C].ICLA,arXiv preprint arXiv:1412.6980.
Regnier J,Cadet H,Bonilla L F,et al.2013.Assessing nonlinear behavior of soils in seismic site response:Statistical analysis on Kik-net strong-motion data[J].Bulletin of the Seismological Society of America,103(3):1750-1770.
Rubinstein J L.2011.Nonlinear site response in medium magnitude earthquakes near Parkfield California[J].Bulletin of the Seismological Society of America,101(1):275-286.
Wang H Y,Jiang W P,Wang S Y,et al.2019.In situ assessment of soil dynamic parameters for characterizing nonlinear seismic site response using KiK-net vertical array data[J].Bulletin of Earthquake Engineering,17(5):2331-2360.
Wu C,Peng Z,Benzion Y.2010.Refined thresholds for non-linear ground motion and temporalchanges of siteresponse associated with medium-size earthquakes[J].Geophysical JournalInternational,182(3):1567-1576.

备注/Memo

备注/Memo:
收稿日期:2023-02-05.
基金项目:国家自然科学基金项目(51978434).
第一作者简介:苏闻浩(1998-),硕士研究生在读,主要从事地震工程研究工作.E-mail:18862633233@163.com.
通信作者简介:刘启方(1969-),研究员,博士生导师,主要从事地震工程研究工作.E-mail:Qifang_liu@126.com.
更新日期/Last Update: 2024-03-20