|本期目录/Table of Contents|

[1]张 帅,杨润海,姜金钟,等.基于Jitter采样的压缩感知地震勘探数据重构[J].地震研究,2025,(01):71-79.[doi:10.20015/j.cnki.ISSN1000-0666.2025.0009 ]
 ZHANG Shuai,YANG Runhai,JIANG Jinzhong,et al.Compressed Sensing Seismic Exploration Data Reconstruction Based on Jitter Sampling[J].Journal of Seismological Research,2025,(01):71-79.[doi:10.20015/j.cnki.ISSN1000-0666.2025.0009 ]
点击复制

基于Jitter采样的压缩感知地震勘探数据重构(PDF)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
期数:
2025年01期
页码:
71-79
栏目:
出版日期:
2024-12-20

文章信息/Info

Title:
Compressed Sensing Seismic Exploration Data Reconstruction Based on Jitter Sampling
作者:
张 帅1杨润海1姜金钟1张 演1郑定昌1邓月飞1杨润萍2王志豪1
(1.云南省地震局,云南 昆明 650224; 2.玉龙县地震局,云南 玉龙 674100)
Author(s):
ZHANG Shuai1YANG Runhai1JIANG Jinzhong1ZHANG Yan1ZHENG Dingchang1DENG Yuefei1YANG Runping2WANG Zhihao1
(1.Yunnan Earthquake Agency,Kunming 650224,Yunnan,China;2.Yulong Earthquake Agency,Yulong 674100,Yunnan,China)
关键词:
压缩感知 Jitter采样 地震勘探 数据重建
Keywords:
compressive sensing the Jitter sampling seismic exploration data reconstruction
分类号:
P315.3
DOI:
10.20015/j.cnki.ISSN1000-0666.2025.0009
摘要:
受野外复杂环境影响,地震勘探采集的地震数据往往不完整且有坏道。为提高原始地震数据的完整度,基于压缩感知稀疏反演理论,构建了一种基于Jitter采样的压缩感知地震勘探数据重构方法。从采样模型和采样信号频谱分析等方面详细对比3种采样方法的优缺点。通过合成地震数据测试,从信噪比、均方根误差、互相关系数3个方面进行重建效果综合评价并应用于实际数据中。结果表明:与传统随机采样方法相比,基于Jitter采样方法重构前后的地震数据形态振幅一致性更强,信噪比更高、误差更小、互相关系数更高。实际数据应用结果显示:重构后的叠后地震成像数据同相轴清晰,连续性更强,振幅一致性强,对噪声压制较好。这表明Jitter采样在保持随机性采样的同时,可以有效控制采样间隔,解决了采样点过于分散或者过于集中的问题,更有利于数据的恢复。综上,Jitter采样方法能够从稀疏不均匀数据中重建出密集规则化的地震数据,可以为后续的高质量偏移成像、速度建模等研究提供完整地震数据支撑。
Abstract:
In the process of seismic exploration data acquisition,due to the complex field environment,the collected seismic data are often incomplete and have bad traces,but the completeness of the original seismic data is prerequisite for seismic data processing and interpretation. Based on the theory of compressive sensing sparse inversion,we constructed a compressive sensing method to reconstruct seismic exploration data by Jitter sampling. Then we compared our proposed sampling with the Gaussian sampling method and the regular undersampling method from the aspects such as their sampling model,spectrum analysis of sampled signal. Further,we tested the synthetic seismic data and,aiming at root-mean-square error,signal to noise ratio,cross correlation coefficient,we made a comprehensive evaluation of the reconstruction effect of the three methods. Comparing the three sampling methods,we found that the original seismic data and the reconstructed data by Jitter method have better consistency in the form and the amplitude,higher signal to noise ratio,less error,and larger correlation coefficient. The practical application of the reconstructed seismic data by Jitter method proves that these data have cophasal axes,good continuity,good consistency in amplitudes,and good effect for noise suppression. This indicates that the Jitter sampling method is able to do random sampling and in the meantime control the sampling interval and in this way make the sampling points not too scattered nor too concentrated. This is helpful for data recovery. In conclusion,the Jitter sampling method is able to reconstruct the dense and regularized data from the original,sparse,and uneven seismic data,thus provides the complete seismic data for the follow-up migration imaging and velocity modeling.

参考文献/References:

白兰淑,吴庆举,张瑞青.2022.压缩感知高分辨率接收函数叠加成像及其应用[J].地球物理学报,65(11):4354-4368.
Bai L S,Wu Q J,Zhang R Q.2022.High-resolution receiver function imaging based on Compressive Sensing and its application[J].Chinese Journal of Geophysics,65(11):4354-4368.(in Chinese)
曹静杰,肖金梅,朱跃飞,等.2022.一种基于压缩感知理论的浅层地震高效采集方法[J].地球物理学进展,37(5):1920-1932.
Cao J J,Xiao J M,Zhu Y F,et al.2022.Efficient shallow seismic acquisition method based on compressed sensing theory[J].Progress in Geophysics,37(5):1920-1932.(in Chinese)
郭念民,李海山,冯雪梅,等.2014.非抽样离散小波变换叠前地震数据重建方法[J].石油地球物理勘探,49(3):508-516.
Guo N M,Li H S,Feng X M,et al.2014.Non sampling discrete wavelet transform pre stack seismic data reconstruction method[J].Oil Geophysical Prospecting,49(3):508-516.(in Chinese)
刘璐,刘洋,刘财,等.2021.地震随机噪声压缩感知迭代压制方法[J].地球物理学报,64(12):4629-4643.
Liu L,Liu Y,Liu C,et al.2021.Iterative seismic random noise suppression method based on compressive sensing[J].Chinese Journal of Geophysics,64(12):4629-4643.(in Chinese)
唐刚,杨慧珠.2010.基于泊松碟采样的地震数据压缩重建[J].地球物理学报,53(9):2181-2188.
Tang G,Yang H Z.2010.Seismic data compression and reconstruction based on Poisson Disk sampling[J].Chinese Journal of geophysics,53(9):2181-2188.(in Chinese)
唐刚.2010.基于压缩感知和稀疏表示的地震数据重建与去噪[D].北京:清华大学.
Tang G.2010.Seismic data reconstruction and denoising based on compressive sensing and sparse representation[D].Beijing:Tsinghua University.(in Chinese)
姚华建.2013.用压缩感知方法研究大地震的破裂过程-方法与研究进展[J].中国科学技术大学学报,43(11):907-921.
Yao H J.2013.Research on the rupture process of large earthquakes using compressive sensing method:methods and research progress[J].Journal of University of Science and Technology of China,43(11):907-921.(in Chinese)
张华,陈小宏.2013.基于Jitter采样和曲波变换的三维地震数据重建[J].地球物理学报,56(5):1637-1649
Zhang H,Chen X H.2013.3D seismic data reconstruction based on Jitter sampling and curvelet transform[J].Chinese Journal of Geophysics,56(5):1637-1649.(in Chinese)
张帅,杨润海,高尔根.2021.基于压缩感知的信号重建方法及在气枪震源信号处理中的应用[J].地震工程学报,43(2):322-330.
Zhang S,Yang R H,Gao E G.2021.Signal reconstruction method based on compressive sensing and its application in air gun source signal processing[J].China Earthquake Engineering Journal,43(2):322-330.(in Chinese)
张帅,杨润海,张演,等.2022.一种基于曲波域的压缩感知降噪方法及其在水库气枪信号中的应用[J].地震研究,45(3):441-451.
Zhang S,Yang R H,Zhang Y,et al.2022.A compressed sensing denoising method based on the curved wave domain and its application in reservoir air gun signals[J].Journal of Seismological Research,45(3):441-451.(in Chinese)
Bai L,Lu H,Liu Y.2020.High-efficiency observations:compressive sensing and recovery of seismic waveform data[J].Pure and Applied Geophysics,177(1):469-485.
Candes E J,Romberg J,Tao T.2006.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,52(2):489-509.
Herrmann F J,Hennenfent G.2008.Non-parametric seismic data recovery with curvelet frames[J].Geophysical Journal International,173(1):233-248.
Loris I,Notet G,Daubechies I,et al.2007.Tomographic inversion using L1-norm regularization of wavelet coefficients[J].Geophysical Journal International,170(1):359-270.
Titova A,Wakin M B,Tura A C.2023.Achieving robust compressive sensing seismic acquisition with a two-step sampling approach[J].Sensors,23(23):9519.
Wang Y,Cao J,Yang C.2011.Recovery of seismic wavefields based on compressive sensing by an l1-norm constrained trust region method and the piecewise random subsampling[J].Geophysical Journal International,187(1):199-213.
Wang Y,Yang C,Cao J.2012.On tikhonov regularization and compressive sensing for seismic signal processing[J].Mathematical models & methods in applied sciences,22(2),doi:10.1142/50218202511 500084.
Zhan Z,Li Q,Huang J.2018.Application of wavefield compressive sensing in surface wave tomography[J].Geophysical Journal International,213(3):1731-1743.



备注/Memo

备注/Memo:
收稿日期:2024-07-31.
基金项目:云南省地震局科技专项(2023ZX02); 云南省地震局“压缩感知及稀疏反演理论研究”创新团队(CXTD202407); 云南省重点研发项目(202203AC100003); 国家自然科学基金(42104060).
第一作者简介:张 帅(1990-),工程师,主要从事压缩感知方面的研究.E-mail:yn_ zhangshuai@163.com.
更新日期/Last Update: 2025-01-01