|本期目录/Table of Contents|

[1]王锦红,蒋海昆.基于地震观测数据的机器学习地震预测研究综述[J].地震研究,2023,46(02):173-187.[doi:10.20015/j.cnki.ISSN1000-0666.2023.0022]
 WANG Jinhong,JIANG Haikun.Research Progress in Field of Earthquake Prediction by Machine Learning Based on Seismic Data[J].Journal of Seismological Research,2023,46(02):173-187.[doi:10.20015/j.cnki.ISSN1000-0666.2023.0022]
点击复制

基于地震观测数据的机器学习地震预测研究综述(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
46
期数:
2023年02期
页码:
173-187
栏目:
出版日期:
2023-06-01

文章信息/Info

Title:
Research Progress in Field of Earthquake Prediction by Machine Learning Based on Seismic Data
作者:
王锦红1蒋海昆2
(1.中国地震局地震预测研究所,北京 100036; 2.中国地震台网中心,北京 100045)
Author(s):
WANG Jinhong1JIANG Haikun2
(1.Institute of Earthquake Forecasting,China Earthquake Administration,Beijing 100036,China)(2.China Earthquake Networks Center,Beijing 100045,China)
关键词:
地震预测 机器学习 特征提取 模型评价
Keywords:
earthquake prediction machine learning feature extraction model evaluation
分类号:
P315.7
DOI:
10.20015/j.cnki.ISSN1000-0666.2023.0022
摘要:
机器学习突出的隐式特征提取和复杂任务处理能力正推动着地震预测科学的发展,为系统了解机器学习技术在地震预测领域的发展现状,从指定时空窗的地震震级预测、发震位置和发震时间估计三方面,综述了国内外机器学习在地震预测领域中的应用,其中在震级预测问题上AI应用最为广泛; 总结了机器学习地震预测的主要特征参数、模型和评价相关问题,从多种评价机制中探索地震活动性参数对地震预测结果的影响,并对地震预测领域存在的问题进行初步讨论和展望。在可预见的未来,AI技术的引入和应用领域的拓展,有可能引领地震预测领域的持续发展。 关键词:地震预测; 机器学习; 特征提取; 模型评价
Abstract:
Machine learning’s prominent implicit feature extraction and complex task processing capabilities are driving the science of earthquake prediction.In order to systematically understand the development status of machine learning technology in the field of earthquake prediction,this paper focuses on the application of machine learning in the field of earthquake prediction at home and abroad in recent years from the three aspects of earthquake magnitude prediction,earthquake location and earthquake occurrence time estimation in a specified time-space window,among which AI is the most widely used in earthquake magnitude prediction.In addition,this paper summarizes the main characteristic parameters,models and evaluation related issues of machine learning earthquake prediction,and explores the influence of seismicity parameters on earthquake prediction results from various evaluation mechanisms.Finally,a preliminary discussion and outlook on the problems existing in the field of earthquake prediction will be conducted.In the foreseeable future,the introduction of AI technology and the expansion of application fields are likely to lead the continuous development of the field of earthquake prediction.

参考文献/References:


蔡煜东,甘俊人,姚林声.1993.人工神经网络在地震综合预报中的应用[J].地震学报,15(2):257-260.
陈一超,曾三友,张好春,等.2008.基于遗传神经网络的地震预测研究[J].计算机应用与软件,(4):135-137.
韩晓飞,潘存英,罗词建.2012.基于遗传算法的广义回归神经网络在地震预测中的应用[J].华北地震科学,30(1):48-53.
李荣峰.2000.福建及其周边地区地震活动人工神经网络模型的构建[J].台湾海峡,(1):107-112.
马士振,刘宏志,牟磊.2020.在地脉动数据上应用分类算法的地震预测实验[J].地震,40(1):159-171.
石绍先,范杨.1990.多级判别在地震综合预报中的应用[J].地震研究,13(4):8-14.
石绍先,沈斌.1986.聚类分析在地震综合预报中的应用[J].地震研究,9(1):57-64.
史翔宇.2021.基于机器学习回归算法的地震预测研究及其在中国地震科学实验场的应用[D].北京:中国地震局地震预测研究所.
王炜,林命週,马钦忠等.2006a.支持向量机及其在地震预报中的应用前景[J].地震工程学报.28(1):78-84.
王炜,刘悦,李国正等.2006b.我国大陆强震预测的支持向量机方法[J].地震学报,28(1):29-36.
王炜,宋先月,王琤琤.2000.人工神经网络在地震中期预报中的应用[J].地震,22(1):10-16.
王炜,吴耿锋.2000.神经网络在地震学方法综合预报中的应用[J].地震学报,22(2):189-193.
中国电子技术标准化研究院.2018.人工智能标准化白皮书(2018版)[EB/OL].(2018-01-24)[2022-09-20].http://www.cesi.cn/201801/3545.html.
Adeli H,Panakkat A.2009.A probabilistic neural network for earthquake magnitude prediction[J].Neural networks,22(7):1018-1024.
Al Banna M H,Taher K A,Kaiser M S,et al.2020.Application of artificial intelligence in predicting earthquakes:state-of-the-art and future challenges[J].IEEE Access,8:192880-192923.
Alarifi A S N,Alarifi N S N,Al-Humidan S.2012.Earthquakes magnitude predication using artificial neural network in northern Red Sea area[J].Journal of King Saud University-Science,24(4):301-313.
Alves E I.2006.Earthquake forecasting using neural networks:results and future work[J].Nonlinear Dynamics,44(1):341-349.
Asencio-Cortés G,Martínez-?lvarez F,Morales-Esteban A,et al. 2016.A sensitivity study of seismicity indicators in supervised learning to improve earthquake prediction[J].Knowledge-Based Systems,101:15-30.
Asencio-Cortés G,Morales-Esteban A,Shang X,et al. 2018. Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure[J].Computers & Geosciences,115:198-210.
Asim K M,AwaisM,Martínez-?lvarez F,et al.2017a.Seismic activity prediction using computational intelligence techniques in northern Pakistan[J].Acta Geophysica,65(5):919-30.
Asim K M,Idris A,Iqbal T,et al.2018a.Earthquake prediction model using support vector regressor and hybrid neural networks[J].PloS one,13(7):e0199004.
Asim K M,Idris A,Iqbal T,et al.2018b.Seismic indicators based earthquake predictor system using Genetic Programming and AdaBoost classification[J].Soil Dynamics and Earthquake Engineeing,111:1-7.
Asim K M,Idris A,Martínez-?lvarez F,et al.2016.Short term earthquake prediction in Hindukush region using tree based ensemble learning[C]//International conference on frontiers of information technology(FIT).IEEE,365-370.
Asim K M,Martínez-?lvarez F,BasitA,et al.2017b.Earthquake magnitude prediction in Hindukush region using machine learning techniques[J].Natural Hazards,85(1):471-486.
Asim K M,Moustafa S SR,Niaz I A,et al.2020.Seismicity analysis and machine learning models for short-term low magnitude seismic activity predictions in Cyprus[J].Soil Dynamics and Earthquake Engineering,130:105932.
Aslam B,Zafar A,Khalil U,et al.2021.Seismic activity prediction of the northern part of Pakistan from novel machine learning technique[J].Journal of Seismology,25(2):639-652.
Corbi F,Sandri L,Bedford J,et al.2019.Machine learning can predict the timing and size of analog earthquakes[J].Geophysical Research Letters,46(3):1303-1311.
DeVries P M R,Viegas F,Wattenberg M,et al.2018.Deep learning of aftershock patterns following large earthquakes[J].Nature,560(7720):632-634.
Florido E,Martínez-?lvarez F,Morales-Esteban A,et al.2015.Detecting precursory patterns to enhance earthquake prediction in Chile[J].Computers & Geosciences,76:112-120.
Gulia L,Wiemer S.2019.Real-time discrimination of earthquake foreshocks and aftershocks[J].Nature,74(7777):193-199.
Hinton G E,Salakhutdinov R R.2006.Reducing the dimensionality of data with neural networks[J].Science,313(5786):504-507.
Hu W S,Nie H L,Wang H.2012.Applied research of BP neural network in earthquake prediction[J].Applied Mechanics and Materials,204:2449-2454.
Huang J,Wang X,Zhao Y,et al.2018.Large earthquake magnitude prediction in Taiwan based on deep learning neural network[J].Neural Network World,28(2):149-160.
Hulbert C,Rouet-Leduc B,Johnson P A,et al.2019.Similarity of fast and slow earthquakes illuminated by machine learning[J].Nature Geoscience,12(1):69-74.
Kail R,Burnaev E,Zaytsev A.2021.Recurrent convolutional neural networks help to predict location of earthquakes[J].IEEE Geoscience and Remote Sensing Letters,19:1-5.
Kanarachos S,Christopoulos S-R.G,Chroneos A,et al.2017.Detecting anomalies in time series data via a deep learning algorithm combining wavelets,neural networks and Hilbert transform[J].Expert Systems with Applications,85:292-304.
Kennedy D,Norman C.2005.What don’t we know?[J].Science,309(5731):75.
Külahc F,(?overI)nce?z M,Do(ˇoverg)ru M,et al.2009.Artificial neural network model for earthquake prediction with radon monitoring[J].Applied Radiation and Isotopes,67(1):212-219.
Li R,LuX,Li S,et al.2020.DLEP:A deep learning model for earthquake prediction[C]//International Joint Conference on Neural Networks(IJCNN).IEEE,1-8.
Madahizadeh R,Allamehzadeh M.2009.Prediction of aftershocks distribution using artificial neural networks and its application on the May 12,2008 Sichuan earthquake[J].Journal of Seismology and Earthquake Engineering,11(3):112-120.
Martínez-?lvarez F,Reyes J,Morales-Esteban A,et al. 2013. Determining the best set of seismicity indicators to predict earthquakes.Two case studies:Chile and the Iberian Peninsula[J].Knowledge-Based Systems,50:198-210.
Mignan A,Broccardo M.2019.One neuron versus deep learning in aftershock prediction[J].Nature,574(7776):E1-E3.
Mignan A,Broccardo M.2020.Neural network applications in earthquake prediction(1994-2019):Meta-analytic and statistical insights on their limitations[J].Seismological Research Letters,91(4):2330-2342.
Morales-Esteban A,Martínez-?lvarez F,Reyes J.2013.Earthquake prediction in seismogenic areas of the Iberian Peninsula based on computational intelligence[J].Tectonophysics,593:121-34.
Mousavi S M,Beroza G C.2020.A machine-learning approach for earthquake magnitude estimation[J].Geophysical Research Letters,47(1):e2019GL085976.
Mousavi S M,Gregory C B.2022.Deep-learning seismology[J].Science,377(6607):eabm4470.
Moustra M,Avraamides M,Christodoulou C.2011.Artificial neural networks for earthquake prediction using time series magnitude data or seismic electric signals[J].Expert systems with applications,38(12):15032-15039.
Nicolis O,Plaza F,Salas R.2021.Prediction of intensity and location of seismic events using deep learning[J].Spatial Statistics,42:100442.
Niksarlioglu S,Kulahci F.2013.An artificial neural network model for earthquake prediction and relations between environmental parameters and earthquakes[J].International Journal of Geological and Environmental Engineering,7(2):87-90.
Panakkat A,Adeli H.2007.Neural network models for earthquake magnitude prediction using multiple seismicity indicators[J].International journal of neural systems,17(1):13-33.
Pandit A,Panda S.2021.Prediction of earthquake magnitude using soft computing techniques:ANN and ANFIS[J].Arabian Journal of Geosciences,14(13):1-10.
Perol T,Gharbi M,Denolle M.2018.Convolutional neural network for earthquake detection and location[J].Science Advances,4(2):e1700578.
Reyes J,Morales-Esteban A,Martínez-?lvarez F.2013.Neural networks to predict earthquakes in Chile[J].Applied Soft Computing,13(2):1314-1328.
Rouet-Leduc B,Hulbert C,Bolton D C,et al.2018.Estimating fault friction from seismic signals in the laboratory[J].Geophysical Research Letters,45(3):1321-1329.
Rouet-Leduc B,Hulbert C,Lubbers N,et al.2017.Machine learning predicts laboratory earthquakes[J].Geophysical Research Letters,44(18):9276-9282.
Rouet-Leduc B,Hulbert C,McBrearty I W,et al.2020.Probing slow earthquakes with deep learning[J].Geophysical Research Letters,47(4):e2019GL085870.
Shodiq M N,Barakbah A R,Harsono T.2015.Spatial analysis of earthquake distribution with automatic clustering for prediction of earthquake seismicity in Indonesia[C]//The Fourth Indonesian-Japanese Conference on Knowledge Creation and Intelligent Computing(KCIC),24-26.
Shodiq M N,Kusuma D H,Rifqi M G,et al.2017.Spatial analisys of magnitude distribution for earthquake prediction using neural network based on automatic clustering in Indonesia[C]//International Electronics Symposium on Knowledge Creation and Intelligent Computing(IESKCIC).IEEE,246-251.
Shodiq M N,Kusuma D H,Rifqi M G,et al.2018.Neural network for earthquake prediction based on automatic clustering in indonesia[J].JOIV:International Journal on Informatics Visualization,2(1):37-43.
Suratgar A A,Setoudeh F,Salemi A H,et al.2008.Magnitude of earthquake prediction using neural network[C]//Fourth International Conference on Natural Computation.IEEE,2:448-452.
Wang K,Johnson C W,Bennett K C,et al.2021.Predicting fault slip via transfer learning[J].Nature communications,12(1):1-11.
Wang Q,Guo Y,Yu L,et al.2017.Earthquake prediction based on spatio-temporal data mining:an LSTM network approach[J].IEEE Transactions on Emerging Topics in Computing,8(1):148-158.
Wang Y,Li X,Wang Z,et al.2022.Deep learning for magnitude prediction in earthquake early warning[J].Gondwana Research,doi:org/10.1016/j.gr.2022.06.009.
Zhang L,Si L,Yang H,et al.2019.Precursory Pattern Based Feature Extraction Techniques for Earthquake Prediction[J].IEEE Access,7:30991-31001.
Zhang S,Shi Z,Wang G,et al.2022.Application of the extreme gradient boosting method to quantitatively analyze the mechanism of radon anomalous change in Banglazhang hot spring before the Lijiang MW7.0 earthquake[J].Journal of Hydrology,612:28249.

备注/Memo

备注/Memo:
收稿日期:2022-08-22.
基金项目:地震动力学国家重点实验室开放基金(LED2022B05).
第一作者简介:王锦红(1999-),硕士研究生在读,主要从事人工智能强余震预测研究.E-mail:17866618823@163.com.
通讯作者简介:蒋海昆(1964-),研究员,主要从事余震统计、余震机理及余震预测研究.E-mail:jianghaikun@seis.ac.cn.
更新日期/Last Update: 2023-03-10