|本期目录/Table of Contents|

[1]王多智,李天池,于广滨,等.快速组装铝合金抢修塔地震易损性分析[J].地震研究,2025,(03):519-530.[doi:10.20015/j.cnki.ISSN1000-0666.2025.0054 ]
 WANG Duozhi,LI Tianchi,YU Guangbin,et al.Seismic Vulnerability Analysis of Rapidly-assembled Aluminum Alloy Repair Towers[J].Journal of Seismological Research,2025,(03):519-530.[doi:10.20015/j.cnki.ISSN1000-0666.2025.0054 ]
点击复制

快速组装铝合金抢修塔地震易损性分析(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
期数:
2025年03期
页码:
519-530
栏目:
出版日期:
2025-04-15

文章信息/Info

Title:
Seismic Vulnerability Analysis of Rapidly-assembled Aluminum Alloy Repair Towers
作者:
王多智1李天池2于广滨3ChizhikSergei3
(1.中国地震局工程力学研究所,黑龙江 哈尔滨 150080; 2.中国电建集团成都勘测设计研究院有限公司,四川 成都 610072; 3.哈尔滨工业大学,黑龙江 哈尔滨 150001)
Author(s):
WANG Duozhi1LI Tianchi2YU Guangbin3Chizhik Sergei3
(1.Institute of Engineering Mechanics,China Earthquake Administration,Harbin 150080,Heilongjiang,China)(2.POWERCHINA Chengdu Engineering Co.,Ltd.,Chengdu 610072,Sichuan,China)(3.Harbin Institute of Technology,Harbin 150001,Heilongjiang,China)
关键词:
快速组装铝合金抢修塔 概率地震需求模型 余震 主余震序列 地震易损性
Keywords:
aluminum alloy repair tower the Probabilistic Seismic Demand model aftershocks mainshock-aftershock sequences seismic fragility
分类号:
P315.92
DOI:
10.20015/j.cnki.ISSN1000-0666.2025.0054
摘要:
以快速组装铝合金抢修塔为研究对象,应用有限元软件ABAQUS建立了抢修塔数值模型,确定了与基本周期对应的谱加速度Sa(T1)为地震动强度指标、节间位移角ISDR为结构地震需求参数,采用极限状态划分方法建立了抢修塔概率地震需求模型。从美国太平洋地震中心数据库分别选取20条余震、主余震序列地震动记录,采用IDA分析方法得到结构的地震响应,评估了在余震、主余震序列地震动作用下抢修塔的易损性,分析了地震动入射角为0° 和90°时抢修塔的抗震承载力。结果表明:①余震作用下,当地震动入射角为0°时,抢修塔遭遇多遇、基本地震作用下的倒塌概率很低,几乎为0,遭遇罕遇地震时的倒塌概率为43.9%; 当地震动入射角为90°时,抢修塔遭遇多遇、基本及罕遇地震的倒塌概率都很低,几乎为0。②主余震序列地震动作用下,当地震动入射角为0°时,抢修塔遭遇多遇地震、基本地震及罕遇地震时的倒塌概率分别接近于0、2.8%和57.6%; 当地震动入射角为90°时,抢修塔遭遇多遇地震、基本地震时的倒塌概率接近于0,遭遇罕遇地震时的倒塌概率为7.2%。
Abstract:
In this paper,we use the finite element software ABAQUS to establish the numerical model of the rapidly-assembled aluminum alloy repair tower.We set the spectral acceleration Sa(T1)corresponding to the fundamental period T1 as the seismic intensity parameter and the inter-segment displacement angle ISDR as the seismic demand parameter of the structure,then establish the Probabilistic Seismic Demand Model(PSDM)of the rapidly-assembled aluminum alloy repair tower by using the Limit State Division method.On this basis,we select 20 groups of ground motion records of the mainshock-aftershock sequences from the U.S.Pacific Earthquake Center(PEER)database.Applying IDA method to these records,we obtain the seismic response of the repair tower.Finally,we evaluate the susceptibility of the repair tower under the action of the aftershocks and the mainshock-aftershock sequences.We analyze the aseismic capacity of the repair tower under the action of the ground motion with 0° incidence angle and 90°incidence angle.The conclusions are as follows:①With regard to the aftershocks,when the ground motions' incidence angle is 0°,the collapse probability of the repair tower under the action of the high-frequent earthquakes or the medium-frequent earthquakes is almost 0; the collapse probability under the action of rare earthquakes is 43.9%.When the ground motions' incidence angle is 90°,the collapse probability of the repair tower under the action of the high-frequent earthquakes or the medium-frequent earthquakes or the rare earthquakes is almost 0.②With regard to the mainshock-aftershock sequences,when the ground motions' incidence angle is 0°,the collapse probability of the repair tower under the action of the high-frequent earthquakes is almost 0; the collapse probability under the action of the medium-frequent earthquakes is 2.8%; the collapse probability under the action of the rare earthquakes is 57.6%.When the ground motions' incidence angle is 90°,the collapse probability of the repair tower under the action of the high-frequent earthquakes or the medium-frequent earthquakes is almost 0; the collapse probability of the repair tower under the action of the rare earthquakes is 7.2%.

参考文献/References:


陈凯,陈亮,胡章亮.2017.近场地震作用下连续梁桥的动力响应分析[J].南昌大学学报(工科版),39(1):50-54.
Chen K,Chen L,Hu Z L.2017.Dynamic response analysis of continuous girder bridges under near-field earthquake effects[J].Journal of Nanchang University(Engineering Edition),39(1):50-54.(in Chinese)
陈清军,李文婷.2014.序列地震动作用下复杂高层结构的反应特征分析[J].力学季刊,35(2):13.
Chen Q J,Li W T.2014.Analysis of the response characteristics of complex high-rise structures under sequential ground motions[J].Quarterly Journal of Mechanics,35(2):13.(in Chinese)
甘凤林,王德贺.2011.输电线路铝合金抢修塔拉线参数[J].南方电网技术,5(5):69-71.
Gan F L,Wang D H.2011.Parameters of aluminum alloy emergency repair towers for transmission lines[J].Southern Power Grid Technology,5(5):69-71.(in Chinese)
何灿明.2018.新型电力线路应急抢修系统ERS在佛山地区应用[J].通讯世界,(2):266-267.
He C M.2018.Application of new Emergency Repair System(ERS)for power lines in the Foshan area[J].World of Communications,(2):266-267.(in Chinese)
侯爱波,汪梦甫,周锡元.2007.Pushover分析方法中各种不同的侧向荷载分布方式的影响[J].世界地震工程,(3):120-128.
Hou A B,Wang M F,Zhou X Y.2007.Effects of different lateral load distribution methods in Pushover analysis[J].World Earthquake Engineering,(3):120-128.(in Chinese)
侯爽,欧进萍.2004.结构Pushover分析的侧向力分布及高阶振型影响[J].地震工程与工程振动,24(3):89-97.
Hou S,Ou J P.2004.Lateral force distribution and higher-mode effects in structural Pushover analysis[J].Earthquake Engineering and Engineering Vibration,24(3):89-97.(in Chinese)
孔伟,林泽楠,赵飞桃.2011.拉线初应力对抢修塔受力性能的影响研究[J].水电能源科学,29(9):164-167.
Kong W,Lin Z N,Zhao F T.2011.Study on the effect of initial tension on the force performance of emergency repair towers[J].Water Resources and Power,29(9):164-167.(in Chinese)
温瑞智,陶夏新,谢礼立.2000.生命线系统的震害耦联[J].自然灾害学报,9(2):105-110.
Wen R Z,Tao X X,Xie L L.2000.Seismic damage coupling of lifeline systems[J].Journal of Natural Disasters,9(2):105-110.(in Chinese)
吴波,欧进萍.1993.主震与余震的震级统计关系及其地震动模型参数[J].地震工程与工程振动,13(3):28-35.
Wu B,Ou J P.1993.Statistical relationship between mainshock and aftershock magnitude and ground motion model parameters[J].Earthquake Engineering and Engineering Vibration,13(3):28-35.(in Chinese)
闫洪强.2020.谈ERS抢修塔在超高压线路迁改中的应用[J].智能城市,6(1):70-71.
Yan H Q.2020.Application of ERS emergency repair towers in the reconstruction of ultra-high voltage lines[J].Smart City,6(1):70-71.(in Chinese)
叶鑫,李雪红,徐秀丽,等.2014.近场长周期地震动对减隔震连续梁桥的地震响应的影响研究[J].公路工程,39(1):135-139.
Ye X,Li X H,Xu X L,et al.2014.Study on the seismic response of continuous girder bridges with seismic isolation under near-field long-period ground motions[J].Highway Engineering,39(1):135-139.(in Chinese)
GB 50135—2019,高耸结构设计标准[S].
GB 50135—2019,Standard for design of high-rising structures[S].(in Chinese)
GB 50011—2010,建筑抗震设计标准[S].
GB 50011—2010,Code for seismic design of building[S].(in Chinese)
Allahvirdizadeh R,Gholipour Y.2017.Reliability evaluation of predicted structural performances using nonlinear static analysis[J].Bulletin of Earthquake Engineering,15:2129-2148.
Altuniik A C,Kalkan E.2017.Earthquake incidence angle influence on seismic performance of reinforced concrete buildings[J].35(4):609-631.
Baker J W.2015.Efficient analytical fragility function fitting using dynamic structural analysis[J].Earthquake Spectra,31(1):579-599.
Casciati F,Cimellaro G P,Domaneschi M.2008.Seismic reliability of a cable-stayed bridge retrofitted with hysteretic devices[J].Computers & Structures,86(17-18):1769-1781.
Fujii K.2018.Prediction of the peak seismic response of asymmetric buildings under bidirectional horizontal ground motion using equivalent SDOF model[J].Japan Architectural Review,1(1):29-43.
Hatzigeorgiou G D,Liolios A A.2010.Nonlinear behaviour of RC frames under repeated strong ground motions[J].Soil Dynamics & Earthquake Engineering,30(10):1010-1025.
Hosseinpour F,Abdelnaby A E.2017.Effect of different aspects of multiple earthquakes on the nonlinear behavior of RC structures[J].Soil Dynamics & Earthquake Engineering,92:706-725.
Jeon J S,Jong S,DesRoches R,et al.2015.Framework of aftershock fragility assessment-case studies:older California reinforced concrete building frames[J].Earthquake Engineering & Structural Dynamics,44(15):2617-2636.
Kazantzi A K,Righiniotis T D,Chryssanthopoulos M K.2008.Fragility and hazard analysis of a welded steel moment resisting frame[J].Journal of Earthquake Engineering,12(4):596-615.
Liu J,Tian L,Meng X,et al.2022.Seismic fragility assessment of a transmission tower considering mainshock-aftershock sequences[J].Journal of Constructional Steel Research,194(5475):107344-1-14.
Magliulo G,Maddaloni G,Petrone C.2014.Influence of earthquake direction on the seismic response of irregular plan RC frame buildings[J].Earthquake Engineering and Engineering Vibration,13(2):243-256.
Padgett J E,Nielson B G,Desroches R.2010.Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J].Earthquake Engineering & Structural Dynamics,37(5):711-725.
Pan H Y,Tian L,Fu X,et al.2020.Sensitivities of the seismic response and fragility estimate of a transmission tower to structural and ground motion uncertainties[J].Journal of Constructional Steel Research,(167):105941.
Qu B,Sanchez-Zamora F,Pollino M.2015.Transforming seismic performance of deficient steel concentrically braced frames through implementation of rocking cores[J].Journal of Structural Engineering,141(5):1-12.
Rigato A B,Medina R A.2007.Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions[J].Engineering Structures,29(10):2593-2601.
Tian L,Ma R,Qu B.2018.Influence of different criteria for selecting ground motions compatible with IEEE 693 required response spectrum on seismic performance assessment of electricity transmission towers[J].Engineering Structures,156:337-350.
Tian L,Pan H Y,Ma R S.2019.Probabilistic seismic demand model and fragility analysis of transmission tower subjected to near-field ground motions[J].Journal of Constructional Steel Research,156:266-275.
Torbol M,Shinozuka M.2012.Effect of the angle of seismic incidence on the fragility curves of bridges[J].Earthquake Engineering & Structural Dynamics,41(14):2111-2124.
Wen Y K,Ellingwood B,Bracci J M.2004.Vulnerability function framework for consequence-based engineering,MAE Center Project DS-4 Report[R].University of Illinois.
Zentner I.2017.A general framework for the estimation of analytical fragility functions based on multivariate probability distributions[J].Structural Safety,64:54-61.


备注/Memo

备注/Memo:
收稿日期:2024-11-19.
基金项目:中国地震局工程力学研究所基本科研业务费专项资助项目(2023B15); 国家电网公司科技项目(52240022001B); 黑龙江省自然科学基金杰出青年基金(JQ2022E006).
第一作者简介:王多智(1982-),博士,研究员,主要从事非结构抗震及大跨空间结构研究.E-mail:wangdz@iem.ac.cn
更新日期/Last Update: 2025-04-15