|本期目录/Table of Contents|

[1]王 之,刘 超,刘秀菊,等.基于SEaTH算法的芦山地震无人机低空遥感影像信息对象级分类*[J].地震研究,2018,41(02):173-179.
 WANG Zhi,LIU Chao,LIU Xiuju,et al.Study on the object-based classification of low-altitude UAV remote sensing image of the Lushan earthquake based on the SEaTH algorithm[J].Journal of Seismological Research,2018,41(02):173-179.
点击复制

基于SEaTH算法的芦山地震无人机低空遥感影像信息对象级分类*(PDF/HTML)

《地震研究》[ISSN:1000-0666/CN:53-1062/P]

卷:
41
期数:
2018年02期
页码:
173-179
栏目:
出版日期:
2018-04-20

文章信息/Info

Title:
Study on the object-based classification of low-altitude UAV remote sensing image of the Lushan earthquake based on the SEaTH algorithm
作者:
王 之12刘 超12刘秀菊3鲁 恒12蔡诗响12杨正丽12
(1.四川大学 水力学与山区河流开发保护国家重点实验室,四川 成都 610065; 2.四川大学 水利水电学院,四川 成都 610065; 3.成都市规划信息技术中心,四川 成都 610042)
Author(s):
WANG Zhi12LIU Chao12LIU Xiuju3LU Heng12CAI Shixiang12YANG Zhengli12
(1. State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University,Chengdu 610065,Sichuan,China)(2. College of Hydraulic and Hydroelectric Engineering,Sichuan University,Chengdu 610065,Sichuan,China)(3. Chengdu Planning Information Technology Center,Chengdu 610042,Sichuan,China)
关键词:
面向对象 多尺度分割 SEaTH算法 无人机影像
Keywords:
object-oriented classification multiresolution segmentation the SEaTH algorithm UAV images
分类号:
P315.9; TP751
DOI:
-
摘要:
在地震这种重大自然灾害面前,快速有效地从遥感影像中提取震区土地利用信息,在灾情评估及灾后重建中发挥着重要作用。选取四川省芦山地震灾区无人机影像为数据源,运用面向对象的影像分析方法,首先研究了多尺度分割中参数的选择,获取了研究区最优分割参数; 然后考虑了各个“影像对象”的数字化特征值,利用改进的SEaTH算法进行特征值优化处理; 最后采用了隶属度信息提取方法,获得了芦山地震灾区无人机低空遥感影像分类图,并进行了分类精度评估,结果表明:研究区影像的分类总精度为87.5%,kappa系数为0.835。
Abstract:
Before an earthquake that is believed to be a major natural disaster,how to quickly and efficiently extract the area of land use information from remote sensing images,plays a role in the evaluation of the disaster and post-disaster reconstruction. In this study,we select UAV images of the Lushan earthquake stricken areas in Sichuan province as data sources and apply an object-oriented image analysis method. Firstly,the selection of parameters in multi-scale segmentation is studied,and the optimal segmentation parameters are obtained. Then,the digital eigenvalue of each image object is considered,and the improved SEaTH algorithm is used to optimize the eigenvalue optimization. Finally,the classification of low-altitude remote sensing images in the Lushan earthquake area is obtained by using the method of membership information extraction,and the classification accuracy is evaluated. The results show that the total accuracy of the classification is 87.5%,and the Kappa coefficient is 0.835. Through the study of this paper,it can provide technical support for the rapid acquisition of geospatial source data of earthquake disaster areas.

参考文献/References:

-

备注/Memo

备注/Memo:
收稿日期:2017-12-14
基金项目:国家自然科学基金青年基金项目(41701499)及四川省科技厅重点研发项目(2018GZ0265)联合资助.
通讯作者:鲁恒(1984-),男,四川眉山人,博士,主要从事3S技术集成应用研究.E-mail:luheng@scu.edu.cn

更新日期/Last Update: 2018-04-23